

The Public Health and Safety Organization

NSF Product and Service Listings

These NSF Official Listings are current as of **Friday**, **January 24**, **2025** at 12:15 a.m. Eastern Time. Please <u>contact NSF</u> to confirm the status of any Listing, report errors, or make suggestions.

Alert: NSF is concerned about fraudulent downloading and manipulation of website text. Always confirm this information by clicking on the below link for the most accurate information: http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=22370&

NSF/ANSI/CAN 60 Drinking Water Treatment Chemicals - Health Effects

Hill Brothers Chemical Company

3000 East Birch Street Suite 108 Brea, CA 92821 United States 714-998-8800

Facility: Phoenix, AZ

Calcium Chloride

Trade DesignationProduct FunctionMax UseHICO Liquid Calcium ChlorideDefluoridation200mg/L

Softener

Liquid Calcium Chloride 30-38% Softener 200mg/L

Defluoridation

Chlorine[CL]

Trade DesignationProduct FunctionMax UseChlorine GasDisinfection & Oxidation30 mg/L

[CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

Ferric Chloride

Trade Designation	Product Function	Max Use
Ferric Chloride 42 BE	Coagulation & Flocculation	250mg/L

Ferrous Chloride

Trade Designation	Product Function	Max Use
Ferrous Chloride	Coagulation & Flocculation	250mg/L

Sodium Hydroxide

Trade Designation	Product Function	Max Use
Liquid Caustic Soda, 25%	pH Adjustment	200 mg/L
Liquid Caustic Soda, 30%	pH Adjustment	167 mg/L
Liquid Caustic Soda, 33%	pH Adjustment	152 mg/L
Liquid Caustic Soda, 50%	pH Adjustment	100 mg/L

Sodium Hypochlorite[HY]

Trade Designation	Product Function	Max Use
12.5% Liquid Bleach	Disinfection & Oxidation	84mg/L
Sodium Hypochlorite - 12.5%	Disinfection & Oxidation	84mg/L
Sodium hypochlorite 5.25%	Disinfection & Oxidation	200mg/L

[HY] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations. Also, reference the AWWA B300 (Hypochlorites) standard's Recommendations for the Handling and Storage of Hypochlorite Solutions appendix for information on preservation techniques for hypochlorite bleach in transit and storage.

Sulfuric Acid

Trade Designation	Product Function	Max Use
Sulfuric Acid 40%	Corrosion & Scale Control	103mg/L
	pH Adjustment	
Sulfuric Acid 50%	Corrosion & Scale Control	92mg/L
	pH Adjustment	
Sulfuric Acid 66 Baume	Corrosion & Scale Control	50mg/L
	pH Adjustment	
Sulfuric Acid 93%	Corrosion & Scale Control	50mg/L
	pH Adjustment	

Facility: Industry, CA

Ammonia, Anhydrous		
Trade Designation	Product Function	Max Use
Ammonia Gas	Disinfection & Oxidation	5mg/L
	Ozone Reduction	
Anhydrous Ammonia	Disinfection & Oxidation	5mg/L
	Ozone Reduction	
Ammonium Hydroxide		
Trade Designation	Product Function	Max Use
Ammonium Hydroxide 19%	Disinfection & Oxidation	26mg/L
Ammonium Hydroxide 20%	Disinfection & Oxidation	25mg/L
Ammonium Hydroxide 24.5%	Disinfection & Oxidation	20mg/L
Ammonium Hydroxide 29.45%	Disinfection & Oxidation	17mg/L
Aqua Ammonia 20%	Disinfection & Oxidation	25mg/L
Aqua Ammonia 24.5%	Disinfection & Oxidation	20mg/L
Aqua Ammonia 26 BE	Disinfection & Oxidation	17mg/L
Ammonium Sulfate		
Trade Designation	Product Function	Max Use
Ammonium Sulfate 40% Solution	Chloramination	6omg/L
	Disinfection & Oxidation	
Liquid Ammonium Sulfate 40%	Chloramination	6omg/L
	Disinfection & Oxidation	
Calcium Chloride		
Trade Designation	Product Function	Max Use
HICO Liquid Calcium Chloride	Defluoridation	200mg/I

Facility: San Jose, CA

Liquid Calcium Chloride 30-38%

Ammonia, Anhydrous		
Trade Designation	Product Function	Max Use
Ammonia Gas	Disinfection & Oxidation	5mg/L
	Ozone Reduction	
Anhydrous Ammonia	Disinfection & Oxidation	5mg/L
	Ozone Reduction	

Defluoridation

Softener

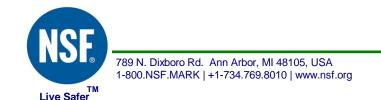
Softener

Ammonium Hydroxide

Trade Designation **Product Function** Max Use

200mg/L

Ammonium Hydroxide 19%	Disinfection & Oxidation	26 mg/L
Ammonium Hydroxide 20%	Disinfection & Oxidation	25 mg/L
Ammonium Hydroxide 24.5%	Disinfection & Oxidation	20 mg/L
Ammonium Hydroxide 29.45%	Disinfection & Oxidation	17 mg/L
Aqua Ammonia 20%	Disinfection & Oxidation	25 mg/L
Aqua Ammonia 24.5%	Disinfection & Oxidation	20 mg/L
Aqua Ammonia 26 BE	Disinfection & Oxidation	17 mg/L


Ammonium Sulfate

Trade Designation	Product Function	Max Use
Ammonium Sulfate 40% Solution	Chloramination	6omg/L
	Disinfection & Oxidation	
Liquid Ammonium Sulfate 40%	Chloramination	6omg/L
	Disinfection & Oxidation	

Calcium Chloride

Trade Designation	Product Function	Max Use
HICO Liquid Calcium Chloride 200	Defluoridation	200mg/L
	Softener	
Liquid Calcium Chloride 30-38%	Softener	200mg/L
	Defluoridation	

Number of matching Manufacturers is 1 Number of matching Products is 42 Processing time was 0 seconds

EVALUATION REPORT

Send To: 22370

Mr. Tony Garcia Hill Brothers Chemical Company 15017 East Clark Avenue City of Industry, CA 91745 Facility: 22374

Hill Brothers Chemical Company 15017 East Clark Avenue Industry CA 91745 United States

Result	PASS	Report Date	09-AUG-2024
Customer Name	Hill Brothers Chemical Company		
Tested To	NSF/ANSI/CAN 60		
Description	Ammonium Sulfate 40% Liquid		
Trade Designation	Ammonium Sulfate 40%		
Test Type	Annual Collection		
Job Number	A-00474300		
Project Number	W0870355		
Project Manager	Jennifer Biers		

This report documents the testing of the referenced product to the requirements of NSF/ANSI/CAN Standard 60 (Drinking Water Treatment Chemicals - Health Effects). This standard establishes minimum requirements for chemicals, the chemical contaminants, and impurities that are added to drinking water from drinking water treatment chemicals. Contaminants produced as by-products through reaction of the treatment chemical with a constituent of the drinking water are not covered by this Standard. Reference the "About the Standard" section at the end of this report for additional information about NSF/ANSI/CAN Standard 60 and the products covered under this Standard.

Thank you for having your product tested by NSF.

Please contact your Project Manager if you have any questions or concerns pertaining to this report.

Report Authorization

Date 09-AUG-2024

Scott E. Randall - Senior Manager Commercial Water

Seatte francia

General Information

Standard: NSF/ANSI/CAN 60

Chemical Name: Ammonium Sulfate 40%

Monitor Code: B

Physical Description of Sample: Liquid Tested DCC Number: DA08950

Trade Designation/Model Number: Ammonium Sulfate 40%

Sample Id: **S-0002128208**

Description: Ammonium Sulfate 40% | Liquid

Sampled Date: 30-Jul-2024 Received Date: 21-Jun-2024

Tox Normalization Information:

0.0980

Calculated NF
Preparation method used

A

JL 60 mg/L

Compound Reference Key: SPAC

Lab Normalization Information:

Date exposure completed
Final volume of solution
Mass of material used

30-JUL-2024 0.25 L

0.25 L 153 mg

Normalization Calculation:

Normalized Result = Test Result (ug/L) * NF

Where NF = MUL (mg/L) *

Final Volume Of Solution (L)

Mass of Material Used (mg)

- MUL = Maximum Use Level;
- Mass of Material Used = The mass of sample analyzed in the laboratory;
- Final Volume of Solution = The volume of water used to dilute the sample;
- An additional factor may be used to adjust the analytical result to field use conditions to account for product carryover, flushing, or other assumptions stipulated with the use of the product. If an additional factor is used, it is included in the information above.

Testing Parameter	Units	Sample	Control	Result	Norm. Result	Acceptance Criteria(1)	Evaluation Status
	'						
Ann Arbor Chemistry Lab							
Metals II in water by ICPMS (Ref: EPA 200.8)							
Arsenic	ug/L	ND(1)	ND(1)	ND(1)	ND(0.1)	1	Pass
Barium	ug/L	ND(1)	ND(1)	ND(1)	ND(0.1)	200	Pass
Beryllium	ug/L	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.05)	0.4	Pass
Cadmium	ug/L	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.02)	0.5	Pass
Chromium	ug/L	ND(1)	ND(1)	ND(1)	ND(0.1)		
Copper	ug/L	ND(1)	ND(1)	ND(1)	ND(0.1)	130	Pass
Mercury	ug/L	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.02)	0.2	Pass
Lead	ug/L	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.05)	0.5	Pass
Antimony	ug/L	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.05)	0.6	Pass
Selenium	ug/L	ND(1)	ND(1)	ND(1)	ND(0.1)	5	Pass
Thallium	ug/L	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.02)	0.2	Pass
1 - If the acceptance criteria is blank and the evaluation statu	us is "Fail", then	the criteria used	will be noted or	the letter acco	ompanying thes	e results.	

Common Terms and Acronyms Used:

Sample..... Test result on the submitted product sample after prepared or exposed in accordance with the standard. Control..... Test result on a laboratory blank sample analyzed in parallel with the sample. Result..... Sample test result minus the Control test result. Normalized Result... Result normalized in accordance with the test standard to reflect potential at-the-tap concentrations Result is below the detection level of the analytical procedure as identified in the parenthesis. ND()..... DCC Number..... NSF document control code of the registered formulation of the product tested Microgram per liter = 0.001 milligram per liter (mg/L) ug/L..... SPAC..... Acceptance criteria of the standard (Single Product Allowable Concentration)

References to Testing Procedures:

NSF Reference	Parameter / Test Description
C1183	Metals II in water by ICPMS (Ref: EPA 200.8)

Test descriptions preceded by an asterisk "*" indicate that testing has been performed per NSF requirements but is not within its scope of accreditation.

Unless otherwise indicated, method uncertainties are not applied in any determinations of conformity. Testing utilizes the requested sections of any referenced standards, which may not be the entire standard.

Dates of Laboratory Activity: 26-JUL-2024 to 06-AUG-2024

Testing Laboratories:

All work performed at:

NSF_AA

NSF
789 N. Dixboro Road
Ann Arbor MI 48105

About the Standard:

NSF/ANSI/CAN Standard 60: Drinking Water Treatment Chemicals - Health Effects

NSF/ANSI/CAN 60 establishes minimum health effects requirements for the chemicals, the chemical contaminants, and the impurities that are directly added to drinking water from drinking water treatment chemicals. It does not establish performance or taste and odor requirements. The standard contains requirements for chemicals that are directly added to water and are intended to be present in the finished water as well as other chemical products that are added to water but are not intended to be present in the finished water. Chemicals covered by this Standard include, but are not limited to, coagulation and flocculation chemicals, softening, precipitation, sequestering, pH adjustment, and corrosion/scale control chemicals, disinfection and oxidation chemicals, miscellaneous treatment chemicals, and miscellaneous water supply chemicals.

The testing performed to this standard is done to estimate the level of contaminants or impurities added to drinking water when the chemical is used at the "Maximum Use Level" under attestment. Prior to testing, information is obtained on the formulation and sources of supply used to manufacture the chemical. This information is then reviewed along with the minimum requirements of the standard to establish the potential contaminants of concern. A representative sample of chemical is obtained for testing. The chemical sample is prepared for analysis through specific methods established in the standard based on the type of chemical and then is analyzed for potential contaminants determined during the formulation review. The laboratory results are normalized to represent potential at-the-tap values and then compared to the "single product allowable concentration" (SPAC) established by the standard. The product is found in compliance with the standard if the normalized value is less than or equal to the allowable concentration.