

Ammonia Ion Selective Electrode Troubleshooting

Addressing Drift Issues in Ammonia Measurement

Tiffany Ishaya Silicon Valley Clean Water August 13th, 2024

Equipment

- Meter: Thermo Orion #2 VersaStar Ammonia Meter
- Electrode: High Performance Ammonia Ion Selective Electrode (ISE)

Cat #: 9512HPBNWP

 Membrane: Pre-Assembled Membrane for Ammonia ISE Cat#: 951215

Quality Control

- Four-point calibration prepared using an ammonium chloride 1,000 mg/L standard from Ricca. (Note: The calibration should be five-point.)
 - 1 mg/L, 10 mg/L, 50 mg/L and 100 mg/L
- Calibration Curve Relative Standard Error Verification
- Method Blank
- Laboratory Fortified Blank prepared using an ammonium chloride 1,000 mg/L second source standard from La Mar Ka.
 - 25 mg/L
- Reporting Limit Verification = Method Detection Limit
 - 1 mg/L
- Continuous Calibration Verification (CCV)
 - 50 mg/L
- Matrix Spike/Matrix Spike Duplicate

Method: SM 4500 NH3 D-2011

Sample Matrices

- Plant Process and Regulatory Sites: Influent, Final Effluent, and everything in between.
 - Typical Concentration: 0 mg/L 50 mg/L
 - Dilution: 4x
- Centrifuged Digester Sludge
 - Typical Concentration: 1,000 mg/L 2,000 mg/L
 - Dilution: 100x
- Industrial Users
 - Typical Concentration: 0 mg/L 600 mg/L
 - Dilution: Varies depending on sites and historical data

Routine Analysis Schedule

Analysis Frequency: 1 to 2 times a week

Analysis Batch Size: 8 to 10 Samples

Special Projects: Frequency could rise to 1 to 2 times per week, these projects often span over several months.

Timeline: Issues Encountered

December 2021 – June 2022

CCV recovery failure occurred at least once per month

Note: CCV recovery failure is defined as a % recovery outside of the control limit of 90-110%.

July 2022 - Present

Increased Calibration Curve Relative Standard Error Failures

Note: Calibration Curve Relative Standard Error Failure is defined as a % recovery outside of the control limit of 10%.

- Increased Calibration Slope outside of the acceptance range: -54mV to -60mV
- Increased CCV recovery failures
- Digester sludge analysis increased chance of failed CCV recovery

Identified problems likely caused by an upward drift.

Potential Causes

Membrane Damage

Scratches or punctures can impair its function.

Membrane Contamination

Exposure to interfering chemicals or fouling can change how the membrane responds.

Temperature Variations

Changes in sample temperature can cause the electrode to drift.

Inadequate Electrode Conditioning

Electrodes not properly conditioned before use can result in inconsistent readings.

Matrix Effects

High ionic strength can affect the electrode's ability to accurately measure ammonia.

Presence of Interfering Ions

lons such as potassium, chlorine, or calcium.

Improper Electrode Storage

 Storing the electrode dry or under inappropriate conditions can damage the membrane and impair performance.

Troubleshooting Tips: Analysis

Use Ionic Strength Adjuster (ISA)

Maintain consistent pH across all samples for accurate measurements.

Control Temperature

Keep the temperature uniform for all samples and reagents to prevent reading inconsistencies.

Recondition electrode

Use a 1 mg/L standard solution with ISA to refresh the electrode between samples.

Consistency

Apply the same analysis procedure for all samples.

Adjust Stirring

Set the magnetic stirrer to avoid creating a vortex, ensuring even mixing.

Minimize Carryover

 Rinse the electrode in a beaker of deionized (DI) water until the reading drops below 0.75 mg/L before analyzing new samples.

Troubleshooting Tips: Membrane

- Replace the membrane cap at least once a month.
- Avoid touching the membrane directly to prevent contamination and damage.
- Inspect the membrane regularly and use an angled electrode holder to help avoid air bubbles.

Filling the ISE

Troubleshooting Tips: Calibration

- Prepare standards by serial dilution. Use only fresh standards and do not reuse.
 - Note: Ammonia content dissipates 2 minutes after adding ISA.
- Condition the electrode for 15 minutes using a 1 mg/L standard solution before calibration.
- Always use clean, Class A volumetric glassware for standard preparation.

Electrode Drift Study:

Test the electrode with a 50 mg/L standard two hours after calibration to ensure the drift is not caused by the probe.

Calibration performed two hours prior to reading:

- Measured CCV1 (prepared by serial dilution): Result = 50.97 mg/L
- Measured CCV2 (prepared by direct dilution): Result = 52.50 mg/L
- Measured CCV3 (prepared by serial dilution): Result = 53.03 mg/L
- Measured CCV4 (prepared by direct dilution): Result = 53.44 mg/L

Comments, Questions, or Suggestions?

Discussion Questions

- 1. What has been your experience with drift issues when using ion-selective electrodes?
- 2. How do you identify and mitigate matrix interferences in your samples?