

BACWA Asset Management Workshop at Central San

Painting the Full Picture – Comprehensive Asset Evaluation

Brian Watanabe, PE Doug McHaney, PE

Today's Discussion

- 1 Plant Background
- 2 Project Background
- **3** Condition Assessment
- 4 Comprehensive Asset Evaluation
- 5 Decisionmaking
- 6 Conclusions

Liquid Treatment Process

Solids Treatment Process

Steam Project (Began in 2019)

- Included steam and secondary processes, and the supporting electrical and motor control
- Developed remaining useful life (RUL) for each asset
- Results allowed for definition and prioritization of projects

Project Roadmap

Levels of Condition Assessment & Scoring

Condition and POF Scoring

Central San Condition Score	HDR Condition Score	Probability of Failure (POF)	Description	Percent of Original Life	Maintenance
10	1	1	New or excellent condition	100%	Normal preventative Maintenance
30	2	3	Minor defects only	75%	Normal preventative maintenance, minor corrective maintenance
50	3	5	Moderate deterioration	50%	Normal preventative maintenance, major corrective maintenance
80	4	8	Significant deterioration	25%	Rehabilitation, if possible
100	5	10	Virtually unserviceable	1%	Replace

Destructive Forensic Testing Level 4 Non-destructive **Forensic Testing** Level 3 **Performance Testing** Level 2 Observation Level 1 Age

Electrical Methodology

- Assessment of equipment and feeders, Plant-wide
- Condition = function of (age, inspection, testing)
- RUL = function of (condition, nominal lifespan)

Addressed Aging Infrastructure Driver through Condition Assessment Efforts: What about Other Drivers?

Other Drivers Captured in this Evaluation: Referred to as the Comprehensive Asset Evaluation

Estimated Remaining Useful Life (RUL) Of Assets: Organized Into Four Different Groups Based On Replacement Horizons

- Condition Assessment RUL carried over from previous work
- Capacity RUL determined from data obtained during this evaluation (0.75% growth increase/year)
- Sustainability/Optimization RUL determined by assessing factors in the course of the evaluation

Assigning RUL for the Comprehensive Asset Evaluation

Limiting RUL Governs the Replacement Horizon

Electrical Methodology

- Capacity: based on Load Analyses
- Sustainability: Six groups of evaluation points weighted
- Aging infrastructure (condition)

Decision Making

- RUL's
- Consider consequences of failure
- Standalone project(s)
- Packaging with process projects

Homeruns

- Common language-RUL's
- Methodology/weighting endorsed by O&M
- Scalable
- Avoided common missteps
- Comprehensive/Plant-wide
- Long view
- As builts

Conclusions

- This approach can serve as a template for other agencies to make informed business decisions regarding aging infrastructure.
- CAE builds upon condition assessment results to systematically capture other drivers (capacity and sustainability/optimization).
- The CAE process can ideally help a treatment plant fast track optimization efforts, identify opportunities to extend RUL of major assets when cost effective, and define near and long-term capital improvement projects in a simple and easy to communicate way.