BACWA PFAS
Phase 1 Findings

August 10, 2021
Lab & Permits Committee Discussion
Miguel Mendez and Diana Lin
Agenda

- Background
- SFEI presents Phase 1 findings
- Discussion of Phase 1 results
- Project next steps and Phase 2
Background: Phase 1 Study Objective

- State Water Board requires PFAS sampling in CA (13267/13383) orders
- R2 granted exception to conduct regional study of PFAS
 - Resource efficiency
 - Leverage RMP
 - Inform management
- Study design and reporting consistent with SWB investigation orders

Phase 2: Additional monitoring based on Phase 1 Results (2021)

- May include further investigation of PFAS precursors and analytes, trends, and/or source identification, additional matrices
Phase 1 study design: select representative set of facilities for participation

- Discharge volume
 - 1 – 170 MGD

- Service population and industries
 - 0 - 100% residential/commercial
 - Fabricated metals, electronic manufacturing, industrial laundries, automatic vehicle washing, hospital, military, landfill

- Treatment
 - Secondary and advanced secondary filtration
 - Activated sludge, trickling filter, batch nitrification reactor, oxidation tower

- Participation in 2014 study to evaluate trends

- Geography
 - All Bay subembayments represented
Phase 1 study design

- Sample influent, effluent, biosolids at 15 facilities
 - Evaluate whether samples sufficiently representative for R2, particularly for biosolids
- Partner with SGS Axys for target PFAS analysis that includes 40 target analytes
- QA/QC samples collected at subset of facilities
- Compare composites v. grab samples
- Collect field replicates to assess variation
- Utilize Total Oxidizable Precursors (TOP) assay
 - Indirectly quantify PFAS precursors through oxidation of precursors to terminal PFCAs
 - Analyze influent and biosolids samples and compare to target analytical method
Oxidizable PFAS including precursors (TOP)

- Target PFAS
 - PFCAs

TOP analysis
Data QA/QC review indicates no major quality concerns

- No significant contamination issues observed
 - Elevated detection of 6:2 Fluorotelomer sulfonate (flagged with data qualifier)
- Field replicates showed good reproducibility
 - RPD for individual analytes = 9±11%
 - Grab and composite replicates collected at 3 facilities
- Precision: all MSD pairs met DoD QSM target for replicate RPDs of 30% in all quantified pairs
- Accuracy: Most LCS and MS/MSD samples met DoD QSM targets
 - Samples outside limits flagged with data qualifiers
- SFEI review did not add additional censoring qualifiers
Composites and grabs are generally comparable

- Average RPD for individual analytes 19±15%
 - Compare to RPD of 9% for sample replicates using the same method
- No clear trend whether composites or grabs are higher
- Correlation with industrial flows unclear and requires further investigation

- PFAS in municipal facilities generally comparable
PFAS concentrations in SFOI and SFOS different from municipal facilities
TOP results indicate significant presence of precursors

Median municipal influent concentration = 27 ng/L
TOP results indicate significant presence of precursors.

Sum of TOP - Sum of Target

Median municipal influent concentration = 27 ng/L
Concentrations of PFAS in WWTP Effluent

Median municipal influent concentration = 27 ng/L

Median = 58 ng/L
Comparison of 2009, 2014, and 2020 Studies

- Only 2014 municipal participants included in comparison
- Possible reductions in long-chain PFAS, but trends require further investigation
Municipal biosolid samples generally comparable

Median: 178 ng/g
TOP results in Biosolids

- TOP results indicate significant presence of PFAS precursors
- Sum of target PFAS median was 178 ng/g
Main Takeaways

- Sample procedures sufficient to minimize contamination
- Composites and grab samples are generally comparable
- Sum of PFAS concentrations in municipal influent, effluent, and biosolids generally comparable for each matrix
- Quantified concentrations of PFAS increased in effluent compared to influent due to conversion of PFAS precursors to terminal PFAS products through treatment process
- Significant presence of unknown PFAS precursors in influent and biosolids
Questions? Comments?
diana@sfei.org
miguelm@sfei.org
Project Timeline

- **August**
 - Phase 1 Data and Monitoring Report upload to Geotracker
 - Discuss and prioritize Phase 2 study objectives
 - Aug. 10 Permits Committee
 - Aug. 20 BACWA Board

- **September**
 - SFEI, BACWA, WB discuss and agree on Phase 2 study objectives
 - SFEI delivers technical memo summarizing Phase 1 results and Phase 2 recommendations
 - BACWA contracts with SFEI to design and support implementation of Phase 2
 - SFEI, BACWA develop sampling plan for Phase 2

- **October**
 - Begin sampling
Discuss Priorities for Phase 2 Study Objectives

- Preliminary discussion of Phase 2 study priorities on 7/23
- Proposed Priority Goal:
 - Inform management of PFAS entering Bay Area sewersheds
 - Sample upstream in sewershed to understand PFAS concentrations from different service populations in sewershed.

 Do you agree with this study priority?

- Other objectives briefly discussed
 - Monitoring at groundwater on-site that may be impacted by landfill leachate at specific facilities
 - Mass balance of PFAS through wastewater treatment process (generally or specific facility)
 - Mass balance of PFAS through Reverse Osmosis treatment
 - Total organofluorine analysis (TOF) compared to TOP and target in influent, effluent, and biosolids
 - Another round of monitoring influent, effluent, biosolids for participants, or recruit additional participants
Study Design Discussion

● Recruit and confirm volunteers for participation in Phase 2.
 ○ Would require significant participation in developing study design and collecting samples.
 ○ BACWA would pay for sample analysis.

● Are there particular industries or neighborhoods of interest?
What PFAS analytical methods are available and appropriate?

- Propose combination of TOP and Target methods are necessary
 - Consider feasibility of extending Target analyte list to included additional commonly detected precursors
- Consider inclusion of suspect screening analysis to help identify additional non-target analytes
- Consider including small sampling set using Total Organofluorine Analysis (TOF)
 - Liquid samples use Adsorbable Organofluorine analysis
 - Screening approach
 - Strong interest to SWB
Questions?

diana@sfei.org
miguelm@sfei.org
Sum of PFAS measured in effluent increased compared to influent

Effluent Median = 58 ng/L

Influent Median = 27 ng/L