Building a Statewide Wastewater Pesticide Monitoring Network

Jennifer Teerlink, PhD

Environmental Program Manager

Surface Water Protection Program

California Department of Pesticide Regulation

BACWA BAPPG June 2, 2021

CDPR Surface Water Protection Program

Prevention: Pesticide Registration

Products 1st registered with US EPA

The Surface Water Protection Program routinely evaluates products with potential impact to surface water using a Pesticide Registration Evaluation Model (PREM) wherever possible and expert judgement.

*Examples ONLY - DPR does not endorse any product

Burden of proof for safe use lies with registrants prior to registration

Overview of Pesticide Registration Evaluation Model

Model input data

PREM

Registration recommendations

- Product labels
- Chemistry data *
- Eco-tox data *

* DPR-accepted data only

Evaluation variables

Decision-making flowchart

Functional modules

Graphical user interface (GUI)

- Support
- Conditionally support
- Not support
- Watch-listing, flagging etc.

Prevention: Pesticide Registration

- PREM expanded to include Down-the-Drain Capabilities.
 - Product Types:
 - Pet Products
 - Washable impregnated materials
 - Applied to sewer lines
 - Applied to floor drains
 - Additional Information:
 - Removal rates
 - Use patterns
 - Wash-off fraction

Fipronil and imidacloprid concentrations in effluent exceeded U.S. EPA aquatic benchmarks that are used as a screening tool.

Sadaria, et al., 2017. Environmental Toxicology & Chemistry. 36 (6): 1473-1482.

What Pesticide Data is Available?

- 100s of registered pesticides
- Data reported for 81 pesticides in the United States
- 41 pesticides detected

	Pesticides &		/Eff.	Range	T	Median	DF	No. of	No. of
Degradates				(ng/L)		(ng/L)	(%)	Samples	Facilities
	2,4-D		ff.	<100-1,890)	<100	3	102	52
	Acetamiprid		าf.	3-4./	1	3.2	100	5	1
			ff.	Variable detection limits		1.3-1.7	76	17	13
	Atrazine		nf.			2-18.4	100	19	4
			ff.			<7-29	82	67	16
	Bifenthrin		าf.			7.7-20.3	96	80	32
			ff.	<0.1-1/1.1	_	<1-10.3	71	92	34
	Carbaryl		ff.	<0.49-663		<41	9	140	55
Chlorpyrifos		Ir	nf.	<1-81.5		Limited		13	1
			ff.					30	5
Clothianidin		lr	nf.	<0.9-66	spatial and		id	5	1
		F	ff.	<0.9-34		temporal		17	13
Diuron		E	ff.	<4–775				102	52
Fipronii		Ir	ητ.	<20-146	-	Treatment		41	33
	Effluent	E	ff.			type		57	40
		E	ff.					102	52
	only data	lr	nf.	30-306		51.4-161	100	21	17
		E	ff.	18.5-305		48.3-164	100	25	21
Permethrin		lr	าf.	30-3,800		180-315	100	80	32
		E	ff.	<1-170		<1-21.4	64	90	34
Thiabendazole		E	ff.	24-27		25.5	100	2	2

Sutton, Xie, Moran, Teerlink. Occurrence and Sources of Pesticides to Urban Wastewater and the Environment Chapter 5 in Pesticides in Surface Water: Monitoring, Modeling, Risk Assessment, and Management. ACS Symposium Series, vol. 1308; American Chemical Society: Washington, DC.19.

Budget Change Proposal to Establish Permanent Wastewater Program

- Awarded July 1, 2019
- Contract and Analytical Support
- Key arguments:
 - Existing monitoring data (in part generated in part by RMP)
 - Source control vs. treatment

California Department of Pesticide Regulation
Surface Water Protection Program
Monitoring Efforts

Monitoring Goals

- Spatial trends
- Temporal trends
- Consistent analytical

2019-2020 Study

- 25+ Plants currently participating
- Predominantly in urban centers
- 4 influent/effluent events (time-weighted composites)
- 1 biosolids event

Wastewater

2019 and 2020 Influent Seasonality

Sutton, Xie, Moran, Teerlink. Occurrence and Sources of Pesticides to Urban Wastewater and the Environment Chapter 5 in Pesticides in Surface Water: Monitoring, Modeling, Risk Assessment, and Management. ACS Symposium Series, vol. 1308; American Chemical Society: Washington, DC.19.

Concentrated Sources of Pesticides to Wastewater

Pest Control Operators

Impacted due to COVID19

Laundromat/ Professional Laundry

Pet Grooming/Boarding

Nurseries

Ubiquitous versus concentrated sources

Monitoring Program Next Steps

- Establish analytical methods with Department of Toxic Substances Control as a partner with a focus on lowered reporting limits.
- Select wastewater treatment plants for future monitoring.
 - Plants that serve agricultural regions
 - Smaller wastewater treatment plants
 - Diverse treatment technologies
- Establish long-term sites.
- Craft special studies to target specific questions.

Collaborative Work

 #18-C0019. Indoor Depositional Patterns of Pesticides from Fogger Products to estimate wash-off fraction for down-the-drain modeling.
 Dr. Choe UC Riverside.

#19-C0031. Quantifying California Municipal Wastewater Discharge Contributions to Streams for Pesticide Source Modeling. Dr. Jacelyn Rice, University of North Carolina at Charlotte.

- Quantify dilution factors for WWTPs discharging to surface water.
- Evaluate impact of climate change
- Better understand relative contribution of pesticide use patterns
 - Agricultural
 - Outdoor urban
 - Wastewater Effluent

Intersections with RMP's ECWG

- Adjuvants/Inerts
 - PFAS

Antimicrobials

^{*} Pyrethroids are of low concern in the Bay, but high concern in Bay Area urban creeks

Pesticide Registration Evaluation Model

- USEPA models (PRZM, VVWM, PFAM)
- USEPA modeling scenarios for agricultural pesticide uses
- SWPP development for
 - Urban outdoor uses
 - Pesticide degradates
 - California receiving water
 - Wastewater Effluent
- "TOX" determination
 - Generally, =min(all available acute data)

Spot-on Products

- 9.1% Fipronil
- Recommended frequency of application 30 days
- Products "waterproof" once dry

 Wash volunteer dogs 2, 7, or 28 days post application.

Average annual pesticide use and estimated urban consumer use 2011-2015

- Pesticide Use Reporting of Professional Applications
- Estimated Consumer:
 - Outdoor Only
 - Mixed
 - Clothing
 - Pets
 - Indoor Only

Xie, Budd, Teerlink, Luo, Singhasemanon. 2019. Assessing Pesticide Uses with Potentials for Down-the-Drain Transport to Wastewater in California. In Prep

Xie, Budd, Teerlink, Luo, Singhasemanon. 2019. Assessing Pesticide Uses with Potentials for Down-the-Drain Transport to Wastewater in California. In Prep