Napa Sanitation District 66” Trunk Sewer Rehabilitation Project

Presented By: Jennifer Glynn, P.E
Agenda

- Project Background and Overview
- Rehabilitation Alternatives Analysis
- Recommended Alternative
- Brief Bypass Pumping Discussion
- Other Project Challenges
Project Background

- 15,400 feet of 66” diameter RCP pipe.
- 66” trunk sewer conveys 90% of the District’s flow to the WWTP.
- RCP pipe constructed in 1960s with no lining
 - Began to convey raw wastewater in 2000
- Sewer surcharges during storm events
Project Overview

- CCTV Inspection of 3 miles of 66" diameter unlined RCP Pipe
- Condition assessment
- Estimate of remaining useful life
- Project prioritization
- Rehabilitation alternatives analysis
- Final Design
Recommended Project

- Structural rehabilitation of approximately 6,985 feet of 66" RCP between manholes R70-012 and Q73-001.
- Manhole rehabilitation
Agenda

- Project Background and Overview
- Rehabilitation Alternatives Analysis
- Recommended Alternative
- Brief Bypass Pumping Discussion
- Other Project Challenges
<table>
<thead>
<tr>
<th>Rehabilitation Alternative</th>
<th>Viable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPP – UV Cured</td>
<td>✗</td>
</tr>
<tr>
<td>“Structural” Spray-On Liner</td>
<td>✗</td>
</tr>
<tr>
<td>Segmental Slipliner (Vylon)</td>
<td>✗</td>
</tr>
<tr>
<td>CIPP – Water Cured</td>
<td>✗</td>
</tr>
<tr>
<td>Segmental Slipliner (Hobas)</td>
<td>+</td>
</tr>
<tr>
<td>Spiral Wound Pipe</td>
<td>+</td>
</tr>
<tr>
<td>Tight Fit / Compression Liner</td>
<td>+</td>
</tr>
</tbody>
</table>
Analysis Categories

- Constructability
- Access Requirements
- Typical Construction Durations / Productivity Rates
- Easement / TCE Requirements
- Permitting Requirements
- Bypass System Requirements
- Hydraulic Impacts
- Relative Costs
CIPP – Water Cured

- Tight-fit liner with negligible annular space
- Maximum continuous installation length of 1,200' for water cure at this diameter
- Small insertion pit excavation (12’ x 12’)
- Approx. 1 week to insert liner, cure, cool, and seal at manholes for each installation
- 63.5” ID (estimated)
- Manning’s n = 0.010 – 0.012 - “improved hydraulics”
- Full bypass required
Segmental Sliplining (Hobas)

- Large insertion pits (13’ x 30’)
- Up to 1,800 LF/day
- 57” ID (60” OD) with flush-bell joints plus annular space grouting
- Manning’s n = 0.010 - “improved hydraulics”
- No bypass required.
Spiral Wound Pipe (Sekisui SPR™ TF)

- Tight-fit liner with negligible annular space
- Max continuous installation length of 750 feet.
- Six access pits required between manholes due to installation length limitations (8’ x 8’)
- No excavation for insertion at manholes
- Up to 300 LF/day
- 63” ID (estimated)
- Manning’s $n = 0.009-0.011$ - “improved hydraulics”
- Partial bypass required (pipe 20-30% full [max])
Tight Fit / Compression Lining (Swagelining)

- No annular space / no grouting
- Full bypass required
- Typically used for pressure pipe
- Large insertion pits (8’ x 80’)
- Up to 2,000 LF/week
- HDPE (jointless)
- Improved hydraulics because of smooth new liner surface.

Source: Swagelining
Summary of Rehabilitation Alternatives Evaluated

<table>
<thead>
<tr>
<th>Rehab Alternative</th>
<th>Constructability/Work Area Requirements</th>
<th>Typical Construction Durations / Installation Rates</th>
<th>Hydraulic Impacts</th>
<th>Bypass Needs</th>
<th>Regulatory / Permitting (excluding bypass)</th>
<th>Relative Cost</th>
</tr>
</thead>
</table>
| **CIPP – Water Cure** | - Maximum continuous installation length of approximately 1,200-feet (water cure only).
- Approx. 12-foot x 12-foot access pit required at each insertion location.
- Approx. 200-foot x 40-foot work area footprint at each insertion location for over-the-hole wet-out.
- Can negotiate bends up to 45 degrees unless compound bends are encountered. | - Approximately one week to line each segment, which includes liner insertion, curing, cool down, and liner seal at manholes. Equivalent average installation rate of approximately 400-feet / day. | - Low.
- Liner thickness estimated at 1.25", resulting in new pipe ID of 63.5".
- n = 0.010 – 0.012, resulting in improved hydraulics.
- Tight fit liner with no annular space. | - Full bypass required. | - Launch pit at R70-013: adjacent to railroad
- Launch pit at R71-001: adjacent to railroad
- Launch pit at R72-002: potential wetlands/habitat, adjacent to Bedford Slough, adjacent to railroad
- Launch pit approx. 500 feet downstream of R72-003: potential wetlands/habitat, adjacent to Napa River, adjacent to railroad | Medium |
| **Spiral Wound Pipe** | - Maximum continuous installation length of 750-feet. Access pits required between the following manholes due to installation length limitations:
- One access pit required between R70-013 to R70-014
- One access pit required between R70-014 to R71-001
- One access pit required between R71-001 to R72-002
- One access pit required between R72-002 to R72-003
- Two access pits required between R72-003 to Q73-004
- No excavation required for insertion of liner through existing manholes. Approx. 8-foot x 8-foot access pit required at each access pit between manholes.
- Can negotiate bends up to 45 degrees. | - Up to 300-feet / day.
- A single, continuous run does not have to be completed in a single day (i.e., liner machine can be left in pipe overnight). | - Moderate.
- Liner thickness estimated at 1.5", resulting in new pipe ID of 63.0".
- n = 0.009 – 0.011, resulting in improved hydraulics.
- Tight fit liner with no annular space, but with a thicker wall than CIPP. | - Can be completed in partial live flow.
- Target: pipe less than 20% full during liner installation.
- Partial bypass required to maintain water level below 20% if installation is scheduled to occur during non-low flow periods. | - Excavation required for the six access pits between manholes due to liner installation length limitations: These access pits would be located adjacent to a railroad, water bodies, and wetland/habitat | Medium |
| **Segmental Sliplining** | - Approx. 13-foot x 30-foot access pit at R70-014, R71-002 and Q73-004.
- Construction area approx. 20-feet x 80-feet at each access pit.
- Curves are navigated using 10-foot segments.
- Angle points (manufactured bends) must be excavated to be replaced, if applicable. | - Up to approx. 1,800-feet / day (after access shafts have been constructed). | - High.
- 57" ID (60° OD) with flush-bell joints.
- n = 0.010, resulting in improved hydraulics. | - Can be completed in live flow.
- Target: pipe less than 50% full during liner installation. | - Access pit at R70-014: adjacent to railroad
- Access pit at R71-002: potential wetlands/habitat, adjacent to Bedford Slough, adjacent to railroad
- Access pit at Q73-004: wetlands/habitat; adjacent to railroad | Low |
| **Tight Fit / Compression Lining** | - Approx. 8-foot x 80-foot access pits at R72-002, Q73-004, R70-013 and Q73-001.
- Pipe laydown area required to string out liner pipe behind pits at R72-002 and Q73-004 in each lining direction.
- Typically, cannot navigate through angle points (manufactured bends). | - Approx. 2,000-feet / week (including construction setup).
- Each individual pull must be completed within 1 day regardless of length. | - Moderate to High.
- n = 0.010 – 0.012, resulting in improved hydraulics.
- No annular space grouting. | - Full bypass required. | - Access launch pit at Q73-004: wetlands / habitat; adjacent to railroad
- Access launch pit at R72-002: wetlands / habitat, adjacent to Bedford Slough, adjacent to railroad | High |
Agenda

- Project Background and Overview
- Rehabilitation Alternatives Analysis
- Recommended Alternative
- Brief Bypass Pumping Discussion
- Other Project Challenges
Recommended Rehabilitation Alternative - CIPP

- Thinnest liner wall thickness of all the alternatives evaluated
 - Least hydraulic impacts on the system
- Competitively priced and high contractor availability
- Least disturbance (and related permitting considerations) associated with liner installation
- Relatively fast installation
CIPP Design Issues

- **Insertion Points**
 - Manholes will be removed for lining – 12’ X 12’ excavation
 - Existing pipe will be saw-cut to yield a 5’ diameter opening

- **Wet-out**
 - Over-the-hole wet-out will be required due to liner size, liner weight, and trucking limitations

- **Water Curing**
 - Need to identify water source
 - Styrene - store or filter cure water on-site prior to sending through biological processes at treatment plant.
Prescribed CIPP Layout

- Maximum lining distance will likely be approximately 1,200 feet.
- One new intermediate manhole will likely be required.
New MH Location

Approximate location of new manhole
Agenda

- Project Background and Overview
- Rehabilitation Alternatives Analysis
- Recommended Alternative
- Brief Bypass Pumping Discussion
- Other Project Challenges
Sewer Bypass

- 21.5 MGD peak dry weather flow
- 100% pump redundancy
- 3 parallel 18-inch diameter HDPE pipes estimated
- One large set-up for the entire project
- Estimated duration: 5 ½ months
Sewer Bypass
Agenda

- Project Background and Overview
- Rehabilitation Alternatives Analysis
- Recommended Alternative
- Brief Bypass Pumping Discussion
- Other Project Challenges
CEQA

- Initial Study / Mitigated Negative Declaration
- Sewer bypass, alterations to existing manholes, and installation of a new manhole may impact wetlands or river riparian habitat
- CEQA process will include:
 - Air Quality/Greenhouse Gas Analyses
 - Biological Resources Assessment and Technical Report
 - Jurisdictional Wetland Delineation and Report
 - US Fish and Wildlife Service Section 7 Endangered Species Act Consultation and Biological Assessment
 - Cultural Resources Assessment and Technical Report
- CEQA process will start after the Preliminary Design Report has been completed.
Permitting

- **Regional Water Quality Control Board**
 - Discharge Permit for cure water discharge, if needed for storage of cure water at treatment plant
 - Section 401 Water Quality Certification

- **City of Napa**
 - Encroachment permit for manhole access in public right-of-way

- **Union Pacific / California Northern Railroad**
 - Letter of Permission for activities within the railroad right-of-way, such as temporary above-ground bypass piping parallel to the railroad tracks
Permitting (Continued)

- CA Dept of Fish and Wildlife
 - Section 1600 Streambed Alteration Agreement for bypass in Napa River tributary
 - Incidental Take Permit (not scoped because we think avoidance is feasible- only needed if any impact to state-listed species)

- US Army Corps of Engineers
 - Section 404 Nationwide for potential effects to navigable waters
 - May require consultations with: US Fish and Wildlife Service for potential impacts to Endangered Species and National Marine Fisheries Service for impacts to anadromous fish

- Start permitting process after submittal of 60% design.
QUESTIONS?