

NMS Science Program Update

- Background
- Program Update
- Permit 2 directions

D Senn, Z Zhang, A Chelsky, T Winchell, E Nuss, A King, E King, I Wren¹

and MANY regional collaborators

¹ Bay Keeper

sfbaynutrients.sfei.org

Collaborators

<u>SFEI</u>

Z Zhang, E Nuss, T Winchell, E King, A Chelsky, Ali King, D Senn

USGS-Menlo Park

J Cloern, L Lucas, C Martin, E Nejad, T Schraga

USGS-Sacramento

M Downing-Kunz, B Bergamaschi, B Downing, L Stumpner, T Kraus

UC Santa Cruz R Kudela, M Peacock

<u>SCCWRP</u> M Sutula; M Beck

<u>UC Davis</u> R Holleman E Gross

UC Berkeley

M Stacey P de Valpine

Does SFB have nutrient problems?

- now?
- future?

How can impacts be mitigated or prevented?

- \$5-10bill question

Ecosystem health

Nutrients (N,P)

- Large algae blooms
- Low DO
- Harmful algae, toxins

N and P loads place SFB in upper ~90%ile of estuaries worldwide (g m⁻² d⁻¹)

Cloern et al., in prep

And those loads are increasing...

Dissolved Inorganic Nitrogen (DIN) Loads ($NH_4^+ + NO_3^-$)

Does SFB have nutrient problems?

- now?
- future?

How can impacts be mitigated or prevented?

- \$5-10bill question

SFB doesn't use most of its nutrients

- 1. High turbidity
- 2. Strong tidal mixing
- 3. Filter-feeding clams

- Large algae blooms
- Low DO
- Harmful algae, toxins

loads place SFB in upper ~90%ile ies worldwide (g m⁻² d⁻¹) *Historically*: Resistant to classic eutrophication symptom is prep

Recently: Evidence of changing DSe loads are increasing...

Nutrient Management Strategy

 What nutrient loads can SFB (subembayments) assimilate without adverse impacts?

• What management actions would be effective at achieving protective nutrient loads or concentrations?

Tools/Approaches

- Monitoring
- Numerical Models
- Assessment Framework/Criteria
- Special Studies: Mechanistic/Quantitative Linkages to nutrients

Condition • Monitoring • Assessment Framework	 <u>Link to Nutrients</u> Mechanisms Dose : Response 	 Nutrient Dynamics Inputs, transformations Necessary Action
---	---	--

	Condition • Monitoring • Assessment Framework		Link to Nutrients Mechanisms Dose : Response 		 Nutrient Dynamics Inputs, transformations Necessary Action 	
	Permit 1	Permit 2	Permit 1	Permit 2	Permit 1	Permit 2
Chl-a-DO						
Deep subtidal						
Chl-a-DO						
margins, sloughs						
HABs // Toxins						
Future Scenarios						
Coastal Effects						

Oxygen & Habitat (10/2018)

Monitoring // Moored Sensors (12/2018)

Trends: chlorophyll (12/2018)

Numerical Models

Hydrodynamic model + Biogeochemical model (Transport) (In-situ)

Transport = advection + dispersion + mixing

In-situ = production + grazing + mortality

	Condition • Monitoring • Assessment Framework		Link to Nutrients Mechanisms Dose : Response 		 Nutrient Dynamics Inputs, transformations Necessary Action 	
	Permit 1	Permit 2	Permit 1	Permit 2	Permit 1	Permit 2
Chl-a-DO						
Deep subtidal						
Chl-a-DO						
margins, sloughs						
HABs // Toxins						
Future Scenarios						
Coastal Effects						

Potential Adverse Impacts of Nutrients in SFB

Modeling related Management Questions

- Source apportionment: What are the nutrient sources to habitats ?
- Predict responses: numerous physical/biological forcings and their influence on nutrient-related responses?
 - Responses: chl, DO, HABs
 - Forcings: loads, tides, wind, suspended sediments, salinity/stratification (Q_{fresh}), upwelling, light, etc.
- Dose:Response -- How will the system respond to incremental increases/decreases in nutrient inputs?
- If nutrient reductions are needed, how with the system respond to various management alternatives?

Model Development and Application

Model Development and Application

How well does the model capture..

Phytoplankton biomass/blooms

- Timing....Magnitude....Locations
- Factors controlling loss and gain

Nutrient levels and fate

Dissolved Oxygen

Across a range of conditions and responses

NMS Observation Program

What observational data do we need to inform management decisions?

- Assess current condition
- Predict/anticipate changes
- Establish quantitative linkages
- Calibrate models

	Condition • Monitoring • Assessment Framework		Link to Nutrients Mechanisms Dose : Response 		 Nutrient Dynamics Inputs, transformations Necessary Action 	
	Permit 1	Permit 2	Permit 1	Permit 2	Permit 1	Permit 2
Chl-a-DO						
Deep subtidal						
Chl-a-DO						
margins, sloughs						
HABs // Toxins						
Future Scenarios						
Coastal Effects						

Ship-based monitoring, with USGS NMS Observation Program Chlorophyll Salinity Ight attenuation Support of the particles

- Phytoplankton
- Nutrients
 - Toxins, harmful algae

High Frequency Mooring data:

0000

0 0 0 0 0

10 0 0 0 0 0 0 0 0

- Dissolved Oxygen
- chl-a
- Other parameters

What monitoring network is needed to detect and describe 'events' with sufficient reliability/accuracy?

 Past studies have shown high phytoplankton biomass along shoals.

(Thompson et al., Cloern et al. 1985)

Is sampling in the channel sufficient to get things right?

Thompson et al 2008

Next Generation SFB NMS Observation Program

	Condition • Monitoring • Assessment Framework		Link to Nutrients Mechanisms Dose : Response 		 Nutrient Dynamics Inputs, transformations Necessary Action 	
	Permit 1	Permit 2	Permit 1	Permit 2	Permit 1	Permit 2
Chl-a-DO						
Deep subtidal						
Chl-a-DO						
margins, sloughs						
HABs // Toxins						
Future Scenarios						
Coastal Effects						

Cloern et al 2007

SFEI 2017

- 1. When did changes cease to be statistically significant? Is the trend now negative (and significant)?
- 2. How does chl-a vary in other regions of SFB?
- 3. How do other relevant nutrient-related indicators changing over time? DO, gross primary productivity, nutrients, suspended sediments?
- 4. What trend magnitudes can realistically be detected? How long will it take to detect a sustained change?
- 5. What physical or biological factors could be causing or contributing to observed changes in water quality indicators?

https://sccwrp.shinyapps.io/sfbaytrends/

162.243.13	31.102:383	8/SFDaym	ends/mods	Rmd								*
avids@sf	PT MAIL	CAL	🔥 Drive	A Nut Share	Tech Support - SF	E Visualizations Sci	A NOTES	I nut NOTES	~ iupyter	F R/Stats	ER N	atter

GAM evaluation - SF South Bay

Exploratory plots

The following plots show the raw data for all monitoring stations and parameters in South Bay, 1990 - 2017, Select the parameter, plot type (total time series, by year, or by month), and variable transformation. The year and month plots are aggregated boxplots of all observations at a station for each selected time period. The variable transformation can be used to show the observations in arithmetic or logarithmic space.

GAMs of log-chlorophyll with annual, seasonal trends

Note: All plots below are shown with model results in log-space, although plot axis-scaling is arithmetic.

Generalized additive models (GAMs) were developed to describe trends in chlorophyll-a at each of the monitoring stations in South Bay. The station and selected model can be chosen from the drop down menus. Four types of GAMs were developed for the time series at each station to model chlorophyll as a function of time, where time is measured as an annual and seasonal effect. The four models describe the time components differently and represent increasing levels of complexity to describe the chlorophyll trend:

- gam0 : chl ~ year + s(doy)
- gam1 : chl year + s(doy) + s(year)
- gam2 : chl year + s(doy) + s(year) + ti(doy, year)
- gam6 : chl year + s(doy) + s(year, k = large)

Ian Wren, Marcus Beck, Perry de Valpine, Rebecca Murphy, and David Senn

Fitted averages with 95% confidence intervals: Aug 1-Dec 28

December 2018

37.4 -

-122.3

-122.2

-122.1

-122.0

-122.4

San Mateo Bridge (s27): Other parameters (GPP not shown)

Select seasonal trend aggregations (doy): 1 60 243 365 1 36 75 112 149 186 223 260 287 334 365

San Mateo Bridge (s27)

Spring/Summer chl-a

Summer bottom DO (mg/L)

Potential Adverse Impacts of Nutrients in SFB

	• Monitoring • Assessment		Link to N Mechanism Dose : Resp		 <u>Nutrient Dynamics</u> Inputs, transformations Necessary Action 		
	Permit 1	Permit 2	Permit 1 Permit 2		Permit 1 Permit 2		
Chl-a-DO							
Deep subtidal							
Chl-a-DO							
margins, sloughs							
HABs // Toxins							
Future Scenarios							
Coastal Effects							

Domoic Acid

(Amnesic Shellfish Poisoning)

Photo: Eric Risberg, Associated Press

HABs and PhycoToxins in SFB: Science/Management Questions

- 1. Water Quality / Habitat Quality: Substantial HABs // phycotoxin threat ?
 - a. Sensitive population(s)? *Biota? Humans?*
 - b. Current vs. *Future* Conditions? Δ Physical forcings $\rightarrow \Delta$ HA+phycotoxin severity?
- 2. What factors regulate HA abundance and toxicity in SFB? transport, in situ production
- 3. Role of SFB nutrients: N,P \rightarrow frequency or severity of HA events?
- 4. Protective nutrient loads, with respect to HAs and phycotoxins?

Mussel Toxin concentrations, 9/2015-3/2018

Lighter shade: [tox] < LOQ Grey: [tox] < LOD

Symbol colors correspond SFB region's in map

- Multiple phycotoxins regularly detected in biota
 - Domoic Acid
 - Microcystin
 - Saxitoxin
 - Okadaic Acid (Peacock et al 2018)
- Regularly detect phycotoxins in water (particulate, dissolved)
- Regularly detect multiple HA taxa

2016

Lighter shade: [tox] < LOQ Grey: [tox] < LOD

Low Moderate/Elevated Low/Moderate/Elevated Moderate/Elevated

Transport and fate across subembayments

How local are nutrient pathways?

How much exported to coast?

	• Monitoring • Assessment	lition Framework	Link to N Mechanism Dose : Resp		 <u>Nutrient Dynamics</u> Inputs, transformations Necessary Action 		
	Permit 1	Permit 2	Permit 1 Permit 2		Permit 1 Permit 2		
Chl-a-DO							
Deep subtidal							
Chl-a-DO							
margins, sloughs							
HABs // Toxins							
Future Scenarios							
Coastal Effects							

Full Bay Budget

Export to the Coastal Ocean:

- 35 85% of loads, average 55%
- Significant nutrient source to coastal ocean

A2017103211500.L2_LAC.CIMT_CICORE.chlor_a.

(mg/m^3)	Concentration	Chlorophyll
----------	---------------	-------------

	1 1 1 1			11111			
0.01	0.03	0.1	0.3	1.14	3.	10	

Overview...Major NMS progress over first 4 years of Permit #1

- Enhanced Monitoring//Observation network
 - New analytes (e.g., toxins)
 - New approaches: high-frequency data, moorings; mussels
- Major steps forward on Numerical Modeling
 - Physics/transport
 - Nutrient Loads and Transformations
 - Source tracking
 - Phytoplankton blooms
- Shift in perspective / understanding of condition
 - Everyday conditions for classic metrics or 'responses' parameters appear to be ok
 - Other (newer) issues require continued attention
 - Lower South Bay algal production and DO
 - Ambient conditions related to Harmful Algae and algal toxins
 - Exports to Coast
 - 'Not Everyday conditions'...Future scenarios, Events

	Condition • Monitoring • Assessment Framework		 Link to N Mechanism Dose : Res 		 Nutrient Dynamics Inputs, transformations Necessary Action 		
	Permit 1	Permit 2	Permit 1 Permit 2		Permit 1 Permit		
Chl-a-DO							
Deep subtidal							
Chl-a-DO							
margins, sloughs							
HABs // Toxins							
Future Scenarios							
Coastal Effects							

Major Focus Areas or Challenges Ahead – Science Program 2019-2024

1. Building and Maintaining essential 'Tools'

- Monitoring: What/Where/When \rightarrow wise and timely decisions
- Modeling: Predicting, Forecasting, Uncertainty
- 2. Identifying safe or protective loads and concentrations

- 3. Assessing risk of "events" present, and future
- 4. Testing mechanistic linkages to nutrients:
 - HABs and toxins
 - Low DO in sloughs

5. Effects of Bay nutrients on coastal water quality ?

sfbaynutrients.sfei.org

Status/Progress Tracking: San Francisco Bay Nutrient Management Strategy

Background Management Decisions & Questions Goals & Work Elements Work Progress Project Tracking NMS Meeting Materials

NMS Implementation Bibliography

Reports and Work Products

Nutrient Strategy work products are available below, organized by Work Element. This list is regularly updated as new reports become available in draft and final versions.

Annual Reports	Work Element 4: Establish Guidelines					
a 2015 NMS FY2015 Annual Report	2011 SF Bay NNE Development Lit Review					
d 2016 NMS FY2016 AnnualReport	SF Bay AF Meeting Summary Feb 2014					
2017_NMS_FY2017_AnnualReport	Proposed Workplan for Assessment Framework Development					
Work Element 1: Nutrient Program Administration	Assessment_Framework_January2016_report					
d 2012 Nutrient Strategy Nov 2012	2018 Lower South Bay Dissolved Oxygen and Fish Surveys					
d 2016 NMS Science Plan Report Sep2016	Work Element 5: Monitoring Program Development and Implementation					
Work Element 2: Define the problem	🗟 2014 Monitoring Program Development Plan Aug 2014					
🛿 2011 SFBay NutrientNumericEndpoint Development Lit Review	2014 Algal Pigment Final Report					
a 2014 Nutrient Conceptual Model Draft Final	a 2014 Moored Sensor Yr1 Progress Report					
a 2014 Suisun Synthesis I	2015 SPATT (Algal Toxins) Final Report May 2015					
a 2014 External Nutrient Loads to SF Bay	2017 NMS Observation Program Design					
a 2015 Lower South Bay Synthesis Report June 2015	Work Element 6: Modeling Strategy					
2016 Nutrient sources, sinks and transformations in the Delta (MainReport Jan 2016)	🛃 2014_Model Development Plan to Support SFB Nutrient Management Decisions.pdf					
Link to technical appendices (Nutrient sources, sinks and transformations in the Delta)	2014_Detailed Modeling Workplan.pdf					
 2016 Summary and Evaluation of Delta Subregions for Monitoring and Assessment Link to technical appendices (Summary and Evaluation of Delta Subregions for Monitoring and Assessment) 2016 Suisun Synthesis II: Influence of Nutrient Forms and Ratios on Phytoplankton Production (2017 Nutrient Forms Ratios Workshop Report Other workshop materials (panel charge, presentations, reading list, etc.) 	 FY2016 Modeling Plan 2017 Load Update and Load Reduction Scenario Runs (See Section 6) 2017_SFBay_Interim_Model_Validation_Report 2018_June_Delta_Suisun_Biogeochemical_Model_ProgressReport Work Element 7: Control Strategies 2017 Conceptual Nutrient Trading Program for San Francisco Bay (See Section 7, Freshwater Trust) 2017 Reducing Nutrients in San Francisco Bay through WWTP Sidestream Treatment (Y Shang [EBMUD]) 					
	2017 Treatment Wetlands Opportunities Screening Report					

Modeling

Oxygen & Habitat

Monitoring // Moored Sensors

Trends: chlorophyll

Collaborators

<u>SFEI</u>

Z Zhang, E Nuss, T Winchell, E King, A Chelsky, Ali King, D Senn

USGS-Menlo Park

J Cloern, L Lucas, C Martin, E Nejad, T Schraga

USGS-Sacramento

M Downing-Kunz, B Bergamaschi, B Downing, L Stumpner, T Kraus

UC Santa Cruz R Kudela, M Peacock

<u>SCCWRP</u> M Sutula; M Beck

<u>UC Davis</u> R Holleman E Gross

UC Berkeley

M Stacey P de Valpine

Acknowledgements:

Funding: Nutrient Watershed Permit (BACWA); Regional Monitoring Program; State Water Resources Control Board; In-kind funding from USGS (Cloern et al)

NMS Steering Committee, NMS Planning Subcommittee, and Stakeholders

SFEI staff, Collaborators, and Technical Advisors

Photo: Z Sylvester

Physical / Biological Drivers

Current conditions

Change / Scenario

Future conditions

Current conditions

Change / Scenario

Future conditions

Suspended sediments...Dumbarton Bridge (Lower South Bay)

Stratification Modeling

Stratification: when surface waters are distinct and isolated from water lower down.

Hypothesis: persistent stratification enables phytoplankton blooms

Typical in SF Bay:

Flood tide mixes / Ebb tide stratifies

0.444 and ds/dx = 0.133 psu/km

0.444 and ds/dx = 0.200 psu/km

0.333 and ds/dx = 0.100 psu/km

Now let's look at GPP...Station 32, 1992-early2018

NOTE: To address differences in data density across years (and stations, later), annual cumulative GPP was calculated based on the GAM fit values.. See subsequent slides

Same as slide 13 and 15, but linear y-axis for GPP (some data outside axis limits)

GPP (using biweekly/monthly data same as earlier)

Nutrient Management Strategy

- What nutrient loads can SFB (subembayments) assimilate without adverse impacts?
 - Nutrient Loads, Cycling/Losses/Transformations
 - Biological Responses
 - Dose : Response
 - Condition Assessment: Criteria, Observations
- What management actions would be effective at achieving protective nutrient loads or concentrations?

Focus Areas

- Phytoplankton Blooms & DO
- Harmful Algae & Toxins
- Coastal Exports

Tools/Approaches

- Monitoring
- Numerical models
- Assessment Framework/Criteria
- Special Studies: Mechanistic/Quantitative Linkages to nutrients

What can we learn, mechanistically, about HAs in SFB using long-term data?

- source?
- internal growth?
- resident population(s)?
- Predictors?

Develop and 'Test' conceptual models (HA taxa A, B, C)

Microscopy: Dates/Locations of Presence/Absence

Heterosigma
 <u>Dinophysis</u>
 Noctiluca
 <u>Karlodinium</u>
 Gonyaulax
 <u>Pseudo-nitzchia</u>
 <u>Alexandrium</u>
 Prorocentrum
 Heterocapsa

Karenia

HA of concern Potential HA (?)

Focusing on Alexandrium...

- ... frequent co-occurrence
 - with *Prorocentrum* and *Heterocapsa*

<u>Alexandrium</u>

Prorocentrum
 Heterocapsa

Densities (cells/mL)

- Alexandrium, Prorocentrum, Heterocapsa:
 - ...Commonly appear together
 - during/after major freshwater flow events
 - during elevated chl-a (blooms)

... Alexandrium reach non-trivial densities

- comparable to coastal CA events (~ 10^4 - 10^5 cells / Liter)

Alexandrium

Prorocentrum

Heterocapsa

- but comprise small proportion of overall biovolume

Pseudo-nitzchia: Coastal CA sites, Jan2014-Aug2018

Pseudo-nitzchia: SFB, 1992-2013

Example Harmful Algal Bloom (HAB) forming species and toxins

Domoic Acid

(Amnesic Shellfish Poisoning)

When are toxins produced?

When they are stressed...e.g.,

- Salinity, Temperature
- Nutrients (e.g., ± P, Si, ±N)
- Light conditions

Saxitoxin (Paralytic Shellfish Poisoning)

Alexandrium spp.

Pseudo-nitzschia (cells / L)

NMS Modeling Focus Areas

