Toxicity 101: Species Screening and Toxicity Report Review

Stephen L. Clark, Brant Jorgenson, and Alison Briden *Pacific EcoRisk*

Bay Area Clean Water Association Toxicity Workshop September 18, 2017

Objective of Presentation

Provide an overview of species screening

 Provide recommended toxicity test review approach in support of an independent validation of toxicity test data

Species Screening

Species Screening Requirements

- NPDES permits in some regions require the performance of species screening prior to permit renewal
- Species Screening Study Plan required in most new permits
- Objective is to select the most sensitive species for future compliance monitoring
- Is an element in the State Board draft toxicity policy

Typical NPDES Chronic Test Species

Algae

Photograph by James Sweiderk

Fish

Invertebrates

Species Screening Requirements

- Species selection for Species Screening can be based on:
 - Ocean Plan
 - Inland Surface Waters, Enclosed Bays, and Estuaries Plan
 - the permit
- Marine/Estuarine typically 5 species (freshwater and marine), including at least one "plant", one invertebrate, and one fish in Round 1, and then 3 species in Rounds 2 & 3
- Freshwater typically 3 species in Rounds 1-3
- May include acute species screening as well
- Most sensitive species = compliance monitoring species

Toxicity Report Review

Fundamentals of Toxicity Testing

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Tests
- Test Variability (e.g., PMSD)

Sampling and Sample Handling

- Hold time is 36 hours for initial use;
 - Use for test solution renewals for up to 72 hours after first use for renewals (need COC and test data sheets to review)
- Chilled to 0-6°C during or immediately after collection
- ♦ Store at 0-6°C

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Test
- Test Variability (e.g., PMSD)

Test Acceptability Criteria

 Test must meet method specified Test Acceptability Criteria (TAC) to be valid

<text>

Test Acceptability Criteria

Species	Endpoint	TAC ¹
Selenastrum capricornutum	Growth (Cell Density)	 ≥1.0 x 10⁶ cells/mL in control ≤20% CV in control
Ceriodaphnia	Survival	• $\geq 80\%$ control survival
dubia	Reproduction ²	 3-brood reproduction avg.≥15 neonates/female in control 3-broods in 60% of females in 8 days (need datasheets to review) ≤ 2 males in control³
Pimephales	Survival	• $\geq 80\%$ control survival
promelas	Growth ²	 ≥0.25 mg average weight per surviving fish in control

1 - Test acceptability criteria are summarized in the corresponding summary of test conditions and test acceptability criteria table for each test method. These tables are included in the handout

2 – Based on number of surviving organisms

3 – Not in the corresponding summary of test conditions and test acceptability criteria table, in protocol narrative

Test Acceptability Criteria Chronic *Ceriodaphnia dubia* Test

Reproduction	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr	10	36	32.6	39.4	28	44	1.52	4.81	13.4%	0.0%
100		10	28.6	24.6	32.6	20	35	1.79	5.66	19.8%	20.6%
Survival Sum	mary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr	10	1	1	1	1	1	0	0	0.0%	0.0%
100		10	1	1	1	1	1	0	0	0.0%	0.0%

Test Acceptability Criteria Chronic *Ceriodaphnia dubia* Test

Paci	Pacific EcoRisk Environmental Consulting and Testing																	
			_	Sh	ort-Ter	m Chro	nic 3-1	Brood	Cerio	odaph	nia du	bia Si	urviva	al & R	eprod	luctio	n Test	t Data
D	Client		770		T-+ 1D	647	00	Material:Effluent				Te	st Date:					
121	roject #	24	//8	-	Test ID:	04/	89		Kandor	nization		10, 3	1			Contro	Water:	Modified EPAMH w/ 5% Ambient Water
	Day	New	Old	New	Ołd	(µS/cm)	(°C)	A	В	C	D	E	F	G	Н	I	J	- SIGN-OFF
	0	7.88		8.5		318	24.6	0	0	0	0	0	0	0	0	0	6	Date: JO/DAT New WQ: Test Init.: ARC
	1	810	7.79	22	7.8	201	283	D	0	0	Ð	0	0	0	0	0	0	Date: 10/16/1Rev WQ: Counts: XJ
	2	17-11	020	0.0	\$7	221	D1 2	Ă	Ň				$\overline{\mathbf{a}}$		6			Date: D17/13 New WQ: COC Counts: (D)
		1.14	0.20	9.0	0.2	Sot	247.7	H	77	F			12	E	A	A	A	Sol'n Prep: APF Old WQ: Coc Time: 1045 Date: 19/19/15 New WQ: TV Counts: CJD
ntrol	ļ_,	1.68	1.85	8.6	1.6	270	29,1	-	Э	5	5	2	0	3	5	2	6	Sol'n Prep: SM Old WQ: TK Time: 1330
er Co	4	7.74	7.80	3.6	6.3	323	24.8	$\left(\right) \left(\right)$	O	7	10	O	12	10	O	9	0	Soi'n Prep: SM Old WQ: TV Time: 1425
b Wat	5	7.66	7.77	8.6	8.8	333	24.8	0	13	0	0	15	15	17	15	0	9	Sol'n Prep: My by Old WQ: PS Time: 1730
	6	-	8.00	-	7.7	380	245	16	26	27	23	17	20	0	20	14	21	Date: U/211/1(New WQ Counts: CO Sol'n Prep: Old WO: Time: 15 45
	7								$\mathbf{\nabla}$	$\mathbf{\nabla}$	\mathbf{V}							Date: New WQ: Counts:
	8												- Au	- a				Date: Old WQ: Counts:
								h-	11.1	20	20	27	33	7.5	144	20	h/	36.0
8888							Total=	132	44	139	50)/	23	32	71	28	36	Mean Neonates/Female - 38.0
	Day	New	Old	New	Old	(µS/cm)		A	В	C	D	E E	F	G	Н	1	J	SAMPLE ID
	0	7.72		9.9		1775		D	6	0	0	0	0	0	Θ	0	0	400.39
	1	797	7.94	9.0	8.7	1703		õ	0	0	0	0	0	Ð	0	0	0	40039
	2	757	8 15	95	24	1756		0	$\overline{\Lambda}$	$\overline{\cap}$			6	\sim	\cap	0	$\tilde{\diamond}$	10050
	1	750	776	0.0	0.1	1150		6	6	Ĕ	5	G	6	L.	\leq	F	0	HORED
	F.	107	1.15	10	0.0	1/61		15	0	1		0	0	2	\leftarrow	5	$\frac{0}{c}$	10050
°,600	4	7.58	7.86	10.1	7.1	1770		12	10	HQ.	<u>II</u>	\cup	0	1	0	10	6	40050
-	5	7.49	7.61	8.1	8.8	1725		0	13	(3)	15	14	12	0	15	0	1L	90000
	6	-	7-86	_	7-6	1913		15	16	10	0	15	14	10	12	5	3	
	7																	
	8																	
							Total=	33	35	28	29	32	32	22	34	20	21	Mean Neonates/Female = 786
							Total-	5)	1.	-0	-1	10	301		11	20	21	Mean Neonates/Female = 20,0

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Tests
- Test Variability (e.g., PMSD)

Test Conditions

 Test method protocol specifies "required" and "recommended" test conditions

- Required test conditions <u>must</u> be met, or test is invalid:
 - Test type, duration, age or organisms, test endpoints, solution renewal frequency, etc.
- Recommended test conditions <u>should</u> be met; degree of departure *may* invalidate test.
 - These conditions include test chamber size, solution volume, light intensity, etc.

Test Conditions

- Required and recommended designations are clearly identified for test conditions summarized in the table
- Test conditions not found in the summary of test conditions table:
 - D.O. \geq 4 mg/L, pH 6-9 (not in table)
- Need test data sheets to evaluate test conditions
 Note: There is a difference between invalidation and qualification of a test

Report Review Examples Example #1: Test Conditions

- Toxicity to chronic *C. dubia* repro. in 100% effluent
- D.O. < 4 mg/L on 2 consecutive days
 - Chronic C. dubia test cannot be aerated while in-progress
- Nothing else notable uncovered during report review, all test acceptability criteria were met
- Since effluent toxicity cannot be distinguished from artifactual toxicity due to low D.O., test is invalid

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Tests
- Test Variability (e.g., PMSD)

Statistical Methods

A point estimate value (e.g. EC50, IC25) is calculated only if a dilution series is performed

In Region 2, TUc = 100/EC25

NOEC: The highest effluent concentration where there is not a statistically significant reduction compared to the control

Statistical Methods

Verify the recommended statistical flow chart was followed CETIS default is to follow flow chart

CETIS Sum				Report Dat Test Code:	e: 11 Feb 60	-15 11:23 (p 1 of 2) 859 01-8430-2899			
Chronic Larva	I Fish Survival and Gr	owth Test							Pacific EcoRisk
Batch ID: Start Date: Ending Date: Duration:	14-5454-9595 03 Feb-15 14:20 10 Feb-15 09:00 6d 19h	Test Type: Protocol: Species: Source:	Growth-Survi EPA-821-R-0 Pimephales p Aquatox, AR	val (7d) 2-013 (2002) promelas			Analyst: Diluent: Brine: Age:	Michelle Fong Laboratory Water Not Applicable 1	
Sample ID: Sample Date: Receive Date: Sample Age:	09-1748-9763 02 Feb-15 08:00 02 Feb-15 12:35 30h (4.1 °C)	Code: Material: Source: Station:	Effluent Effluent Eff-001				Client: Project:		
Comparison S Analysis ID 13-5710-5485 20-7614-9119	ummary Endpoint 7d Survival Rate Mean Dry Biomass-mg	NOEL 100 100	- LOEL >100 >100	TOEL NA NA	PMSD 19.1% 18.7%	TU 1 1	Mett Dun Stee	nod nett Multiple Compar I Many-One Rank Su	ison Test

Distributional Tests	3				
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	4.93	15.1	0.4248	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.92	0.884	0.0579	Normal Distribution

Ex: chronic fathead minnow; survival

Statistical Methods

- TST statistic is a new tool that can be used to qualify results of hypothesis testing (i.e. NOEC)
 - Has begun to appear in Region 1 & 5 permits:
 - ◆ IWC vs. Control
 - May yield different results than NOEC, beneficial for chronic tests with high precision and effects <25%

Report Review Examples Example #2: Statistics

Single Compariso	on Summar	y									
Analysis ID En	malysis ID Endpoint Comparison Method						P-Value	Comparis	on Result		
21-0725-7670 Re	production		TST-Welc	h's t Test 0.176				100% passed reproduction			
20-6901-1014 Rej	production		Wilcoxon I	Rank Sum T	wo-Sample	Test	0.0061	100% faile	ed reproduct	ion	
06-2198-5862 Sur	vival		Fisher Exa	act Test			1.0000	100% pas	sed survival		
Representation Con											
Reproduction Su	mmary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	LW	10	35.8	30.6	41	21	42	2.31	7.3	20.39%	0.00%
100		10	29.1	25.5	32.7	19	35	1.59	5.04	17.33%	18.72%
Survival Summar	у										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	LW	10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
100		10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
Reproduction Det	tail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	LW	36	37	41	42	38	40	38	41	24	21
100		32	25	24	30	28	33	32	35	33	19
Survival Detail											
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	LW	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Survival Binomial	s										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	LW	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
100		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

Data Transform	Alt Hyp	Comparison Result	PMS	D
Untransformed	C > T	100% failed reproduction	13.59	1%

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Tests
- Test Variability (e.g., PMSD)

Concentration Response Relationships

- If testing with a dilution series, concentration response relationship must be reviewed to ensure calculated results are interpreted correctly (per EPA 821-B-00-004)
- 3 potential outcomes
 - Concentration-response curves are reliable and should be reported
 - Concentration-response curves are anomalous and should be explained
 - Concentration-response curves are inconclusive and test my require being repeated

Concentration Response Relationships

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Tests
- Test Variability (e.g., PMSD)

Reference Toxicant Tests

- Reference toxicant tests represent a "positive control"
 - Often performed concurrently, as required by SIP
- Organisms exposed to standard concentrations of the selected toxicant
- Organism response evaluated against testing laboratory's 20-test performance history
 - Response outside control limits indicates unusual or anomalous sensitivity

Reference Toxicant Test

• Reference toxicant test results plotted on control chart

- Results falling outside of control chart limits (±2 and ±3 SD) are to be evaluated to determine validity of associated effluent test
- Reference toxicant test should <u>not</u> to be used as *de facto* criterion of effluent test validity
- Should consider:
 - Degree result fell outside of control limits
 - Width of limits (long- term precision)
 - Direction of deviation
 - TAC and test conditions

Report Review Examples Example #3 Reference Toxicant Test

- Toxicity to chronic *C. dubia* repro. in 100% effluent
- Nothing else notable uncovered during report review, all test acceptability criteria were met.
- Concurrent reference toxicant test indicated that the organisms are hypersensitive
- The effluent test results would be qualified, but it is still a valid test and should be reported. Retest is recommended based our best professional judgement

Report Review Examples Example #3 Reference Toxicant Test

Overview of Review Steps

- Sampling and Sample Handling
- Test Acceptability Criteria (TAC)
- Test Conditions
- Statistical Methods
- Concentration Response Relationships
- Reference Toxicant Test
- Test Variability (e.g., PMSD)

Test Variability

- Must review test variability when using sublethal hypothesis test endpoints
- Calculate percent minimum significant difference (PMSD)
 - The PMSD is a test statistic that is to be compared to criteria thresholds established by the EPA

Test Variability

• PMSD is < 10th percentile, too sensitive

- If toxic (statistically significant), but relative response is less than lower PMSD, consider sample <u>not</u> toxic
- If not toxic, accept test
- PMSD is > 90th
 percentile, too
 insensitive
 - If not toxic, retest
 - If toxic, accept test

TABLE 6.	VARIABILITY CRITERIA HYPOTHESIS TESTING I	A (UPPER AND LOV ENDPOINTS SUBM	VER PMSD BOUNDS) F ITTED UNDER NPDES	OR SUBLETHAL PERMITS. ¹
	Test Method	Endpoint	Lower PMSD Bound	Upper PMSD Bound
Method 100 Survival and	0.0, Fathead Minnow Larval I Growth Test	growth	12	30
Method 100 Survival and	2.0, <i>Ceriodaphnia dubia</i> l Reproduction Test	reproduction	13	47
Method 100 capricornut	3.0, <i>Selenastrum</i> um Growth Test	growth	9.1	29

¹ Lower and upper PMSD bounds were determined from the 10th and 90th percentile, respectively, of PMSD data from EPA's WET Interlaboratory Variability Study (USEPA, 2001a; USEPA, 2001b).

Report Review Examples Example #4 Test Variability

Chronic Ceriodaphnia dubia Test Data									
Effluent Treatment	% Survival	Reproduction (# neonates /female)	% Effect						
Lab Control	100	36.9	-						
12.5%	100	36.8	0.27						
25%	100	34.4	6.78						
50%	100	36.1	2.17						
75%	100	<mark>33.3ª</mark>	<mark>9.76</mark>						
100%	100	<mark>32.4ª</mark>	12.20						
Sun	nmary of Statistics								
NOEC =	100% effluent	100% effluent							
TUc (100/NOEC) =	1	1							
Survival EC25 or Reproduction IC25 =	>100% effluent ^b	>100% effluent							
Survival EC50 or Reproduction IC50 =	>100% effluent ^b	>100% effluent							
PMSD		12.8%							

a - Although the statistical analysis of the test data indicates that the response at this test treatment is significantly less than the Control treatment response, it is not to be considered toxic as the test PMSD and relative difference from the Control treatment response are less than the EPA's 10th percentile PMSD limit (i.e., 13%).

b - Due to the absence of significant mortalities, the EC point estimates could not be calculated, but can be determined by inspection to be >100% effluent.

slclark@pacificecorisk.com 707 207-7776