

MINISTRY OF FOREIGN AFFAIRS OF DENMARK

MINISTRY OF FOREIGN AFFAIRS OF DENMARK

Knowledge sharing & collaboration

In California and in Denmark

Discharge Standards – Development

Parameter	Unit	1960	1970-80	1990	2016 (sensitive areas)	EC Standards (1)
BOD ₅	mg/l	150	25	15	10	25
Total N	mg/l	-		8	8	15
Total P	mg/l	-		1.5	0.4	1
Treatment		M	MB	MBNP	MBNPS	

Legend:

M= Mechanical

MB= Mechanical-Biological

MBNP= Mechanical-Biological-Nitrogen-Phosphorus removal

MBNPS= Mechanical-Biological-Nitrogen-Phosphorus removal and sand filtration

(1) Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment

Tax Payment to Government on all three parameters

wta

Regulation by "pollution" tax

Tax Rates – Pollution Discharge	Units	2016
Total N	\$/lb	2,25
Total P	\$/lb	12,4
BOD ₅	\$/lb	1,25

CASE Marselisborg WWTP Aarhus Water, Denmark

- 200.000 PE (1 PE = 0.060 kg BOD/day (= 0.13 lbs/day)
- Designed in the 80's. Nutrient demands in the 90's.

1990 Challenge: Optimization

Increase the efficiency & capacity of the WWTP, oh and...

Reduce effluent values oh and...

without any major investments in the treatment plants themselves

Open systems configurable by Aarhus Water's own staff

Plant Layout Marselisborg WWTP - 220,000 PE

Marselisborg WWTP Compliance with effluent standards

Marselisborg WWTP		Limits	Discharge, 2015				
Parameter	Unit	Standard	Average	Control Value, C	Compliance		
Total N	mg/l	8	5.59	4.86	Yes		
Total P	mg/l	0.8	0.25	0.22	Yes		
Total P	kg/d	20.8	7.21	6.46	Yes		
BI5 _{mod}	mg/l	15	2.14	2.47	Yes		
COD	mg/l	75	24.19	21.75	Yes		
SS	mg/l	20	3.01	3.35	Yes		

Number of samples: 24

Marselisborg WWTP Capacity and loadings 2015

Parameter		Capacity	Load	ding 2015
		Average		Loading Rate [%]
Flow	MGD	6,8	8,7	127
BOD5	[lb/d]	26,675	23,737	89
Total N	[lb/d]	3,417	4,045	118
Total P	[lb/d]	943	595	63
PE _{BOD}	á 60 g BOD/pxd	200,000	179,450	90

Additional loading to the WWTP:

- (1) Septic sludge to inlet = 20-30,000 PE
- (2) Reject water from sludge treatment = 15-17,000 PE_N

aarhusvand

Marselisborg WWTP

Energy Self sufficiency – Status 1.1.2016 – 6.9.2016

Energy Self sufficiency	Net energy production %	Energy self sufficiency %
Electricity, year to day	147 %	147 %
Heat, year to day	193 %	
Energy in total, year to day	169 %	233 %

Net energy production = Production / Consumption

Energy self sufficiency = Sold / Bought

Solutions

1. Process **Optimization**

- Biological Nitrogen and Phosphorus removal
- Clarifier control (increased hydraulic capacity during rain)
- Sensors and VFDs (integrated real time process control)

2. Component **Optimization**

- Turboblowers
- Gasengines (CHPs)
- Fine bubble diffusers / mixers

3. New **Processes**

- Simultaneous Nitrification/Denitrificati on
- Sidestream Hydrolysis/Bio-P
- Sidestream De-Ammonification
- Mainstream Nitriteshunt
- Mainstream De-Ammonification

Results from 1st round Process Optimization

Economic results: Process		Wastewater Treatment Plant				, Z.
Optimization - Municipality of Aarhus	Unit	Marselis	Egaa	Viby	Aaby	Total
WWTP size	PE	200,000	120,000	83,000	84,000	487,000
Reduction of use of resources -	EUR/					
energy and chemicals	year	73,000	31,000	40,000	132,000	276,000
Reduced effluent values - lower	EUR/					
effluent tax	year	114,000	19,000	27,000	2,000	162,000
Increased capacity -	EUR/					
depreciation time 25 years	year	54,000	50,000	132,000	27,000	263,000
	EUR/					Annual Control
Total	year	241,000	100,000	199,000	161,000	701,000
Return of investment	Years	1.0	1.5	1.6	0.9	1.2

Side-stream treatment of centrate

Installed and running: 2015

Flow, max.
 Average daily flow
 Ammonium load, average
 15 m3/h
 280 m³/d
 250 kg/d

DEMON Plant design data (existing tanks):

Equalizing tank
 Process volume (Process tank 1+2)
 Sedimentation tank
 100 m³
 280 m³
 5.2 m²

Results:

Removal efficiency (NH4-N)
 > 85%

Energy consumption ~1,3 kWh/kg NH4-N removed

Total N in effluent reduced with aprox.
 2 mg/l

Reduced wastewater tax 600,000 DKK/year

Processes for Nitrogen Removal

THE TRADE COUNCIL Standard platform for process control and daily operation **DIMS.CORE External modeling** software (well fields, Software sensors, **Process Alarms**, distribution- and drainage Controllers, Models networks, wastewater treatment plants...) **Validated** Results incl. Setdata points Other systems (Historians, **Data Validation, Signal** Labs., Asset management, Filters, Aggregation, Meteorology, ...) and Visualisation, Reporting manual input **Measurements** Set-points Set-points SCADA/PLC (OPCservers) Sensors/actuators

THE TRADE COUNCIL

MARSELISBORG REWATER - An Open Invitation

MINISTRY OF FOREIGN AFFAIRS OF DENMARK

