

BACWA Annual Meeting

27 January 2017

Agenda

- 1. Watershed Permit Requirements
- 2. Project Status
 - a) Optimization
 - b) Upgrades
 - c) Sidestream
- 3. Role of Averaging Periods
- 4. Nutrient Load Reduction by Other Means
- 5. Summary of 2016 Group Annual Report
- 6. Summary of Preliminary Findings

Watershed Permit

Edmund G. Brown Jr.

MATTHEW RODRIQUEZ SECRETARY FOR ENVIRONMENTAL PROTECTION

San Francisco Bay Regional Water Quality Control Board

ORDER No. R2-2014-0014 NPDES No. CA0038873

WASTE DISCHARGE REQUIREMENTS FOR NUTRIENTS FROM MUNICIPAL WASTEWATER DISCHARGES TO SAN FRANCISCO BAY

The following dischargers are subject to waste discharge requirements (WDRs) set forth in this Order, for the purpose of regulating nutrient discharges to San Francisco Bay and its contiguous bay segments:

Table 1. Discharger Information

Discharger	Facility Name	Facility Address	Minor/ Major
		4E4 Marratta Count	

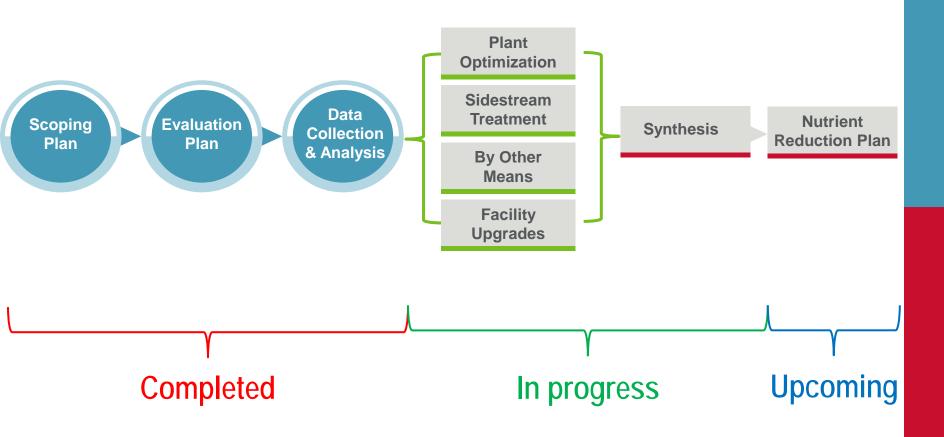
April 9, 2014

Watershed Permit Requirements

Issued April 9, 2014 – Regional Water Board Order No. R2-2014-0014

≻ Requirements:

- Scoping and Evaluation Plan (Accepted first quarter of 2015)
- July 2018: Task 1 Conduct treatment plant optimization and sidestream treatment evaluation for nutrient load reductions (Submittal deadline is July 2018)
- July 2018: Task 2 Conduct treatment plant upgrades and analysis of removal by other means for nutrient load reductions (Submittal deadline is July 2018)
- Annual Reporting (Annual submittal in October from 2015 through 2018)


37 Participating Agencies

Project Status

Overview / Status of Study

Reports Status

Number	Submitted Dra	Submitted Draft Reports (26 Plants)		
1	American Canyon	FSSD	City of Millbrae	
2	Benicia	Hayward	City of Richmond	
3	Burlingame	Livermore	LGVSD	
4	CCCSD	Mt. View	Pinole/Hercules *	
5	City of San Leandro	Napa San	Rodeo *	
6	City of Palo Alto	Novato	San Mateo	
7	City of Petaluma	Oro Loma	SASM	
8	City of San Jose	SFPUC SEP	Sausalito/Marin City *	
9	City of Sunnyvale	Silicon Valley Clean Water	SF Airport	
10	CMSA	South San Francisco	Sonoma County Water Agency	
11	Delta Diablo	Treasure Island	West County	
12	DSRSD	USD		
13	EBMUD	Vallejo		

* Analysis completed and included with the presentation preliminary results

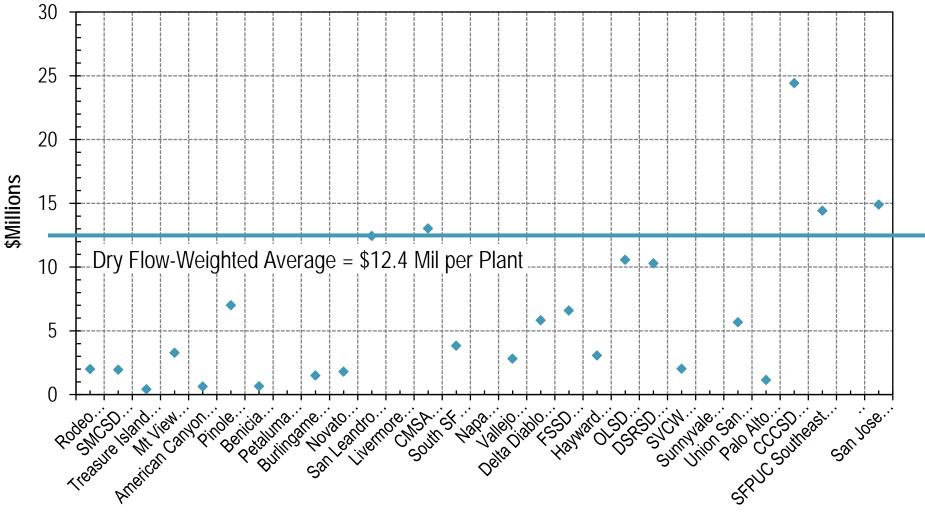
Preliminary Optimization Results

Optimization Approach

- Basis of Evaluation
 - Identify no / low cost strategies to reduce effluent nutrients
 - Planning Period: 2025 Horizon
 - Loading: 0% Increase in Flows and 15% Increase in Loads
 - Design Criteria: Aggressive no permit limits
- Optimization Concepts
 - Use offline tankage
 - Operate in split treatment mode
 - Modify operational mode (e.g., raise SRT)
 - Add chemicals
 - Process control instrumentation
 - Add internal recycle for denitrification

DRAFT Optimization Findings Based on 29 Plants All results are preliminary

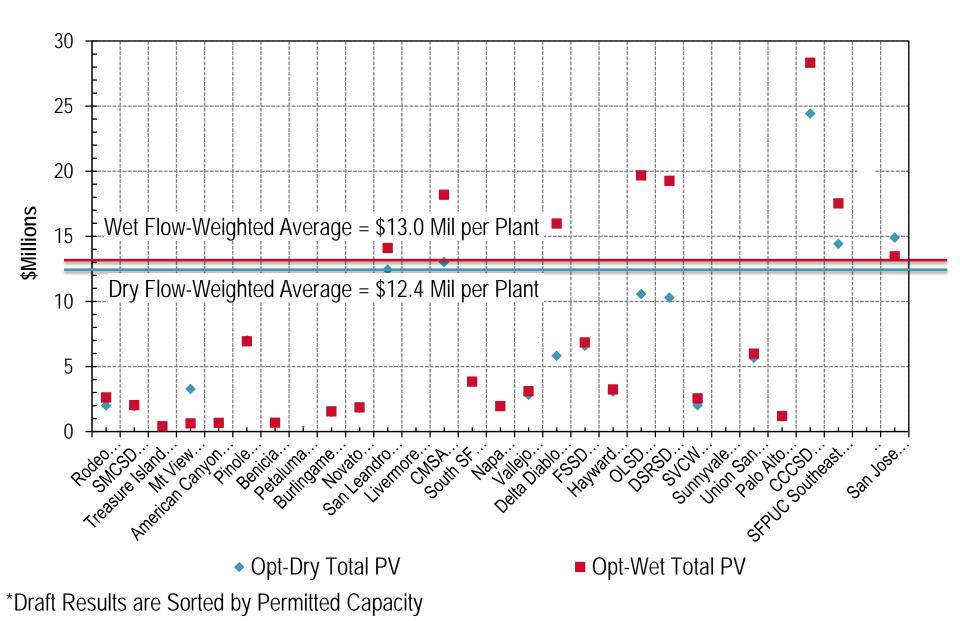
Which nutrients are easiest to remove?

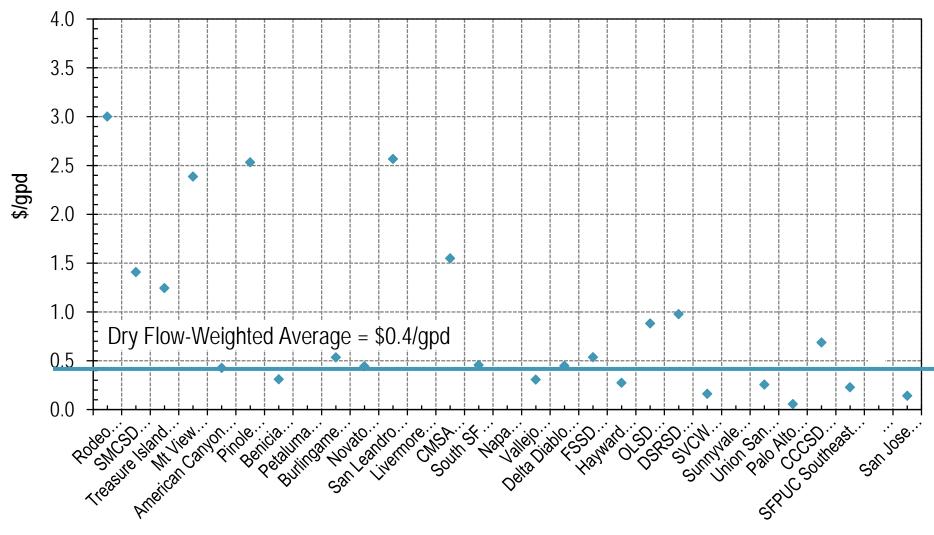

- Ammonia load reduction is most difficult
 - Increasing SRT for plants with act sludge
 - Operating Trickling Filter as a Nitrifying Trickling filter
- TN load reduction is possible if ammonia removal implemented
- TP load is easier to remove
 - Most plants have metal salt chemical feed facilities
 - Some have anaerobic zones
 - Lose TP removal capability by forfeiting anaerobic zone

Costs

- Total PV = \$171M Dry and \$212M Wet
- Total PV ranged from \$0.5M to \$28M per plant
- Flow-weighted Total PV unit cost = \$0.4/gpd
- Not all plants can reduce ammonia/TN loads for both dry and wet seasons:
 - 18 of 29 plants for dry season reduction
 15 of 29 plants for wet season reduction
- Overall Load Reduction from Current Discharge
 - $_{\rm o}$ Overall Ammonia/TN load reduction is 10-14%
 - Overall TP load reduction is 45-50%

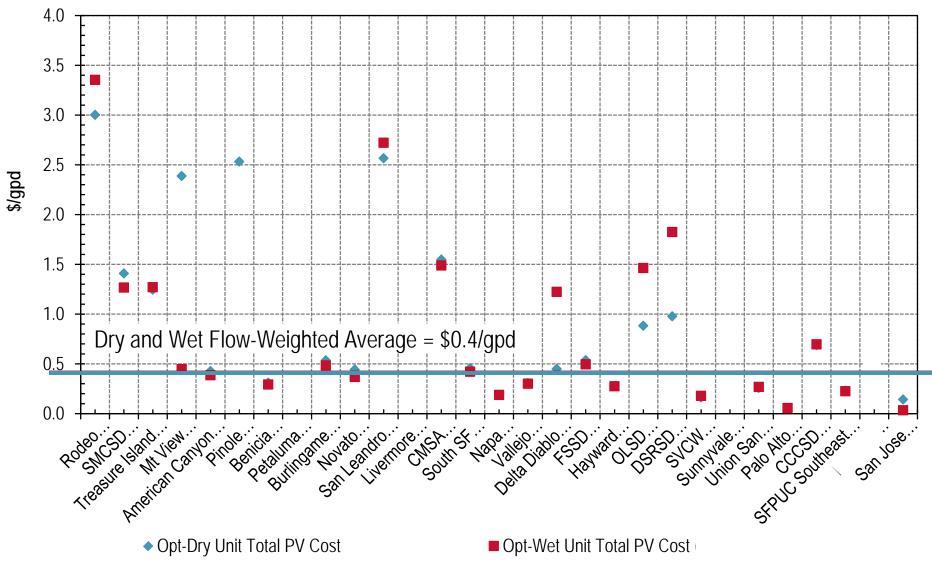
DRAFT Optimization Total PV Costs


All results are preliminary


Opt-Dry Total PV

*Draft Results are Sorted by Permitted Capacity

DRAFT Optimization Total PV Costs


DRAFT Optimization Total PV Unit Costs All results are preliminary

Opt-Dry Unit Total PV Cost

*Draft Results are Sorted by Permitted Capacity

DRAFT Optimization Total PV Unit Costs All results are preliminary

*Draft Results are Sorted by Permitted Capacity

DRAFT Optimization Findings Based on 29 Plants All results are preliminary

Which nutrients are easiest to remove?

- Ammonia load reduction is most difficult
 - Increasing SRT for plants with act sludge
 - Operating Trickling Filter as a Nitrifying Trickling filter
- TN load reduction is possible if ammonia removal implemented
- TP load is easier to remove
 - Most plants have metal salt chemical feed facilities
 - Some have anaerobic zones
 - Lose TP removal capability by forfeiting anaerobic zone

Costs

- Total PV = \$171M Dry and \$212M Wet
- Total PV ranged from \$0.5M to \$28M per plant
- Flow-weighted Total PV unit cost = \$0.4/gpd
- Not all plants can reduce ammonia/TN loads for both dry and wet seasons:
 - $_{\circ}\,$ 18 of 29 plants for dry season reduction
 - 15 of 29 plants for wet season reduction

Load Reduction with Respect to Current Discharge:

- Overall Ammonia/TN load reduction is 10-14%
- Overall TP load reduction is 45-50%

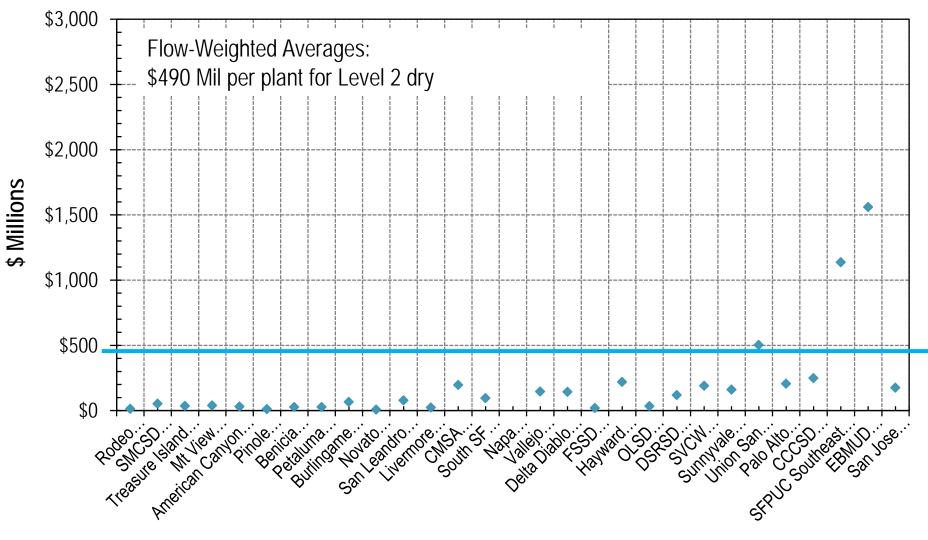
Preliminary Upgrades Results

Upgrades Approach

- Basis of Evaluation
 - Identify upgrade strategies to meet effluent targets
 - Planning Period: 30 Years
 - Loading: Permitted Capacity
 - Design Criteria: Reliability meet permit limits
- Concepts
 - Sidestream Treatment
 - Design Facilities for Level 2 that could be further upgraded to meet Level 3 – no stranded assets
 - Technology Status: Established Technologies

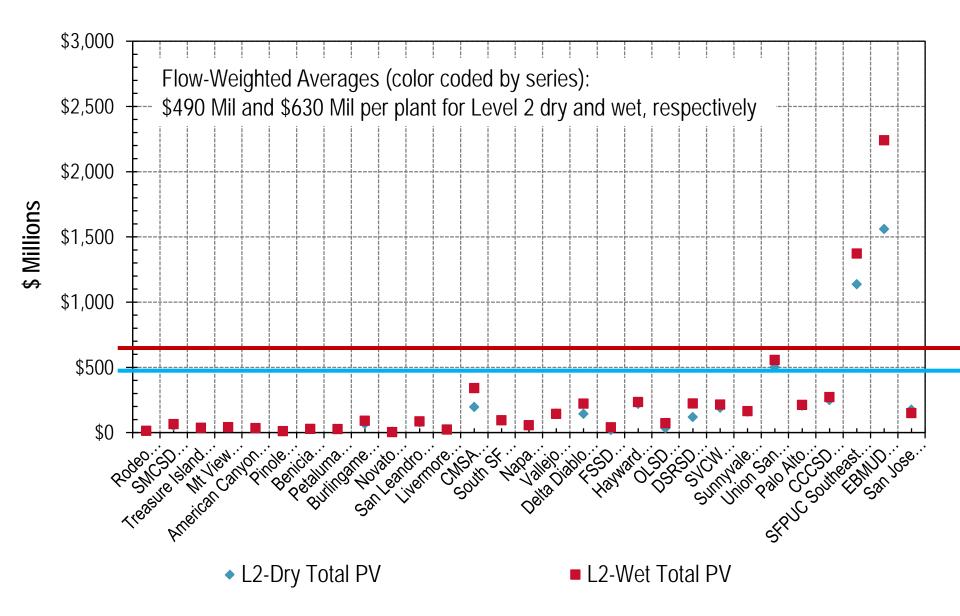
Treatment Levels

Level	Ammonia	TN	ТР
Level 1		Optimization	
Level 2	2 mg N/L	15 mg N/L	1.0 mg P/L
Level 3	2 mg N/L	6 mg N/L	0.3 mg P/L

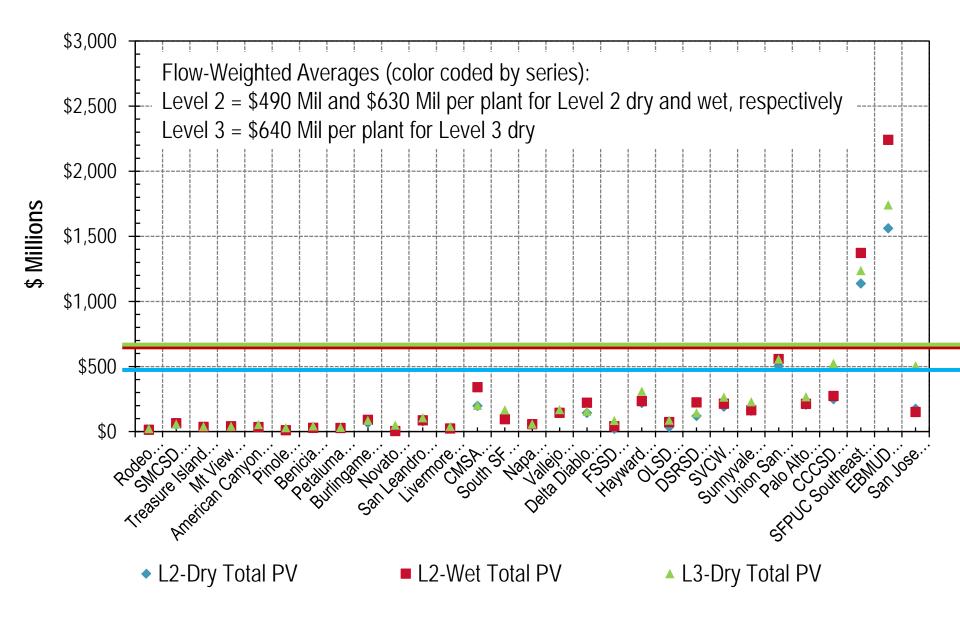

DRAFT Upgrade Findings Based on 29 Plants All results are preliminary

Which nutrients are easiest to remove?

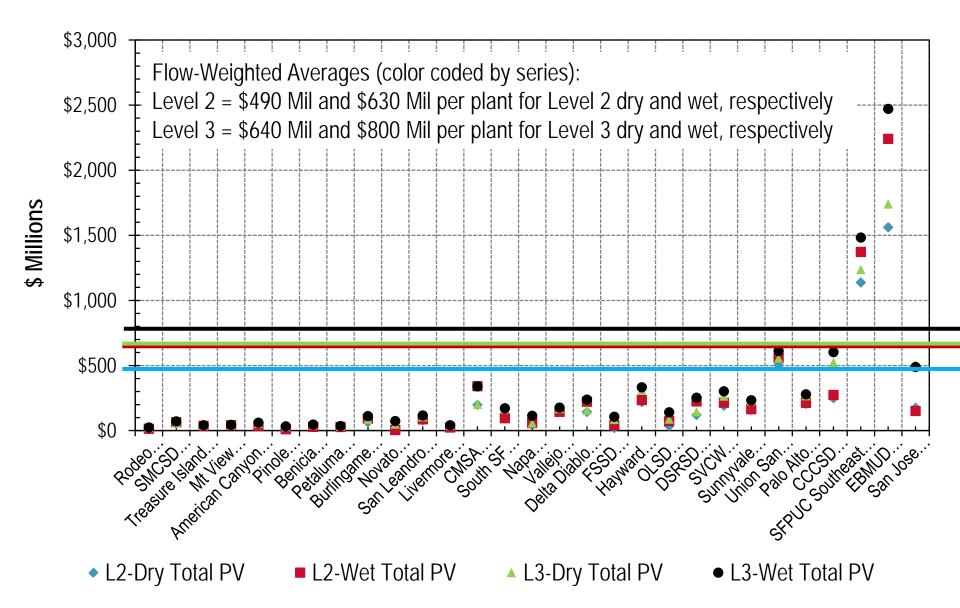
- Ammonia is the most difficult and expensive
 - Bigger basins due to increasing SRT for plants with act sludge
 - Expanded aeration system
 - Additional pumping
- TN load reduction requires ammonia removal
 - Level 3 typically require an external carbon source
- TP load is the simplest and most straight forward to remove
 - $_{\rm o}$ Level 3 requires tertiary filtration
 - Many upgrades use MBR which include filtration in Level 2 already

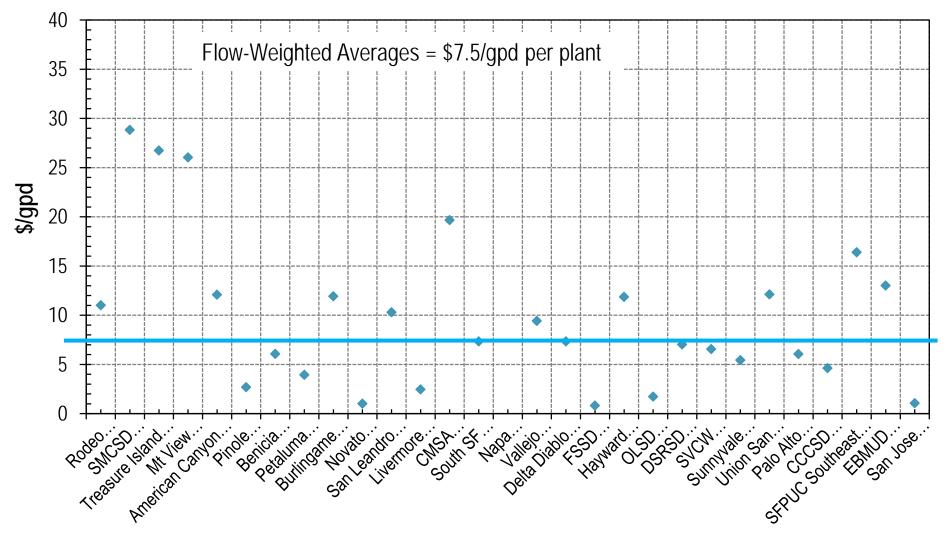

Costs

- Total PV Costs
 - Level 2 = \$5,575M Dry and \$7,080M Wet
 - $_{\odot}$ Level 3 = \$7,310M Dry and \$9,040M Wet
- Total PV Cost Range per Plant
 - $_{\odot}$ Level 2 = \$3.5M to \$2,240M per plant
 - Level 3 = \$22M to \$2,470M per plant
- Total PV Unit Costs
- Level 2: \$0.4 to \$43 per gpd treated
 Level 3: \$2.9 to \$46 per gpd treated
 Load Reduction with Respect to Current
 Discharge:
- Level 2 and 3: >90% for Ammonia
- Level 2: about 55-60% for TN and TP
- Level 3: about 80-85% for TN and TP

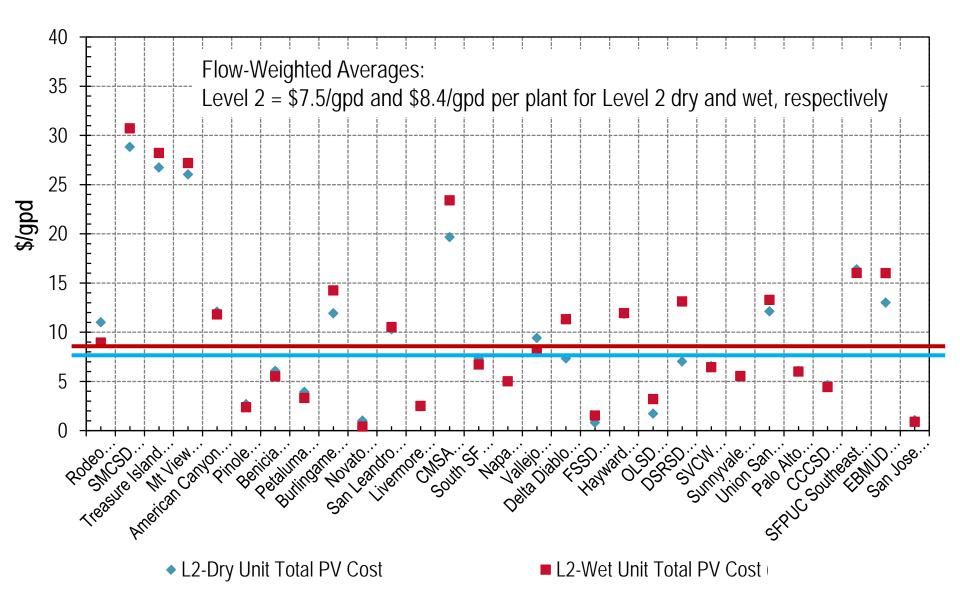


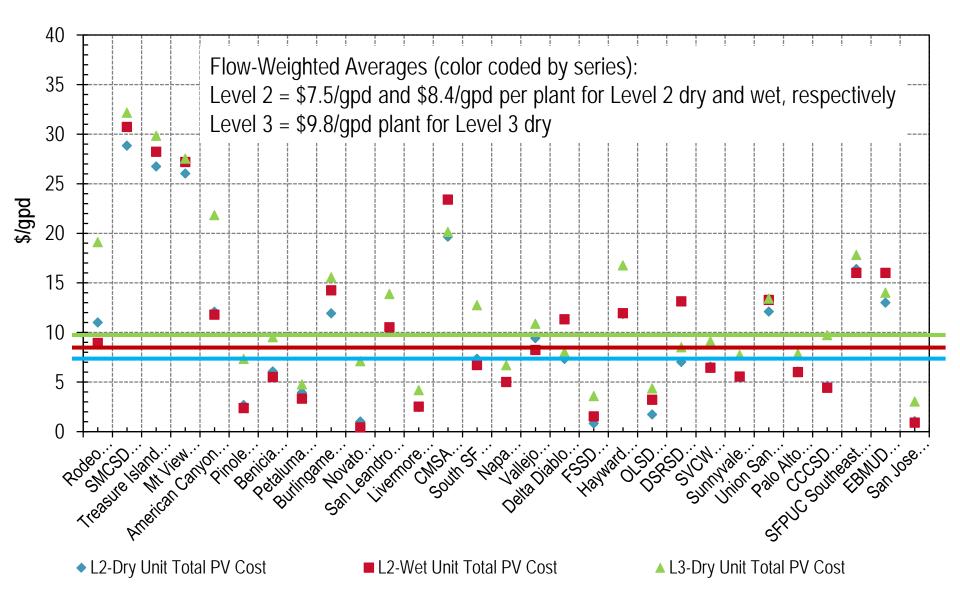
L2-Dry Total PV

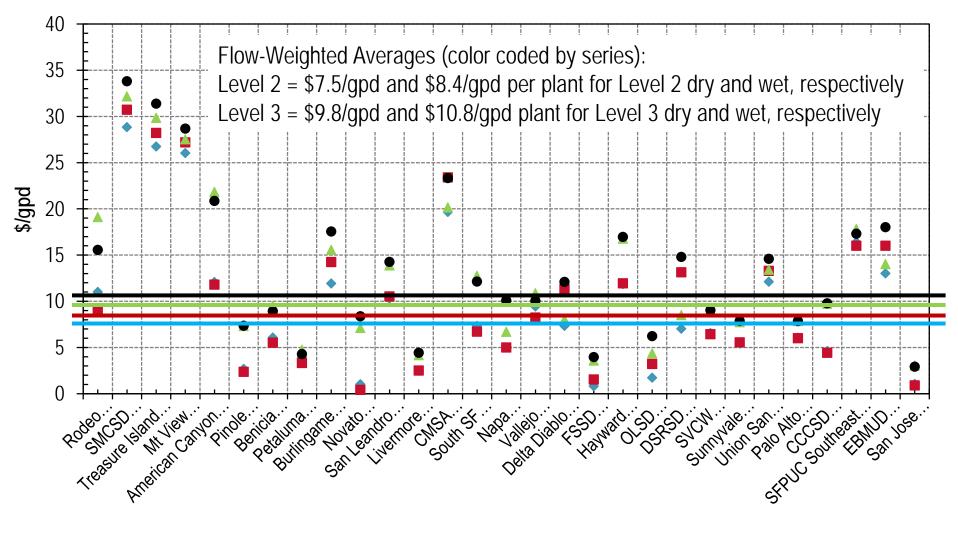

DRAFT Total PV Costs for Upgrades



DRAFT Total PV Costs for Upgrades




DRAFT Total PV Costs for Upgrades



L2-Dry Unit Total PV Cost

L2-Dry Unit Total PV Cost

▲ L3-Dry Unit Total PV Cost

• L3-Wet Unit Total PV Cost

DRAFT Upgrade Findings Based on 29 Plants

Which nutrients are easiest to remove?

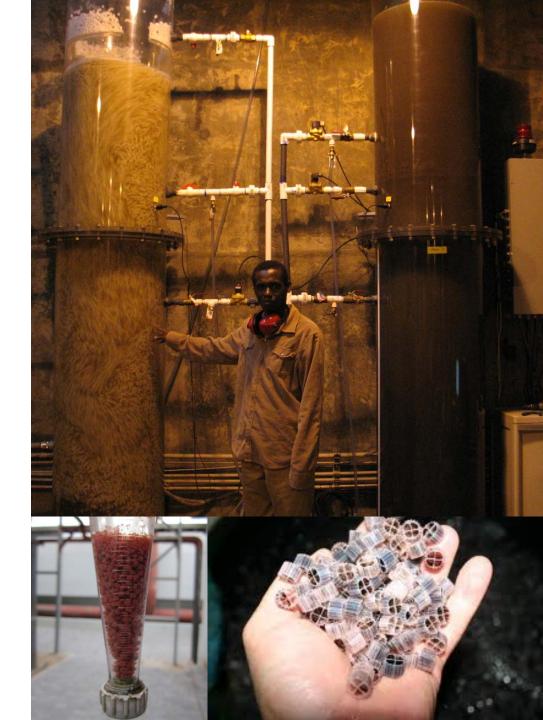
- Ammonia is the most difficult and expensive
 - Bigger basins due to increasing SRT for plants with act sludge
 - Expanded aeration system
 - Additional pumping
- TN load reduction requires ammonia removal
 - Level 3 typically require an external carbon source
- TP load is the simplest and most straight forward to remove
 - Level 3 requires tertiary filtration
 - Many upgrades use MBR which include filtration in Level 2 already

Costs

- Total PV Costs
 - Level 2 = \$5,575M Dry and \$7,080M Wet
 - Level 3 = \$7,310M Dry and \$9,040M Wet
- Total PV Cost Range per Plant
 - $_{\odot}$ Level 2 = \$3.5M to \$2,240M per plant
 - Level 3 = \$22M to \$2,470M per plant
- Total PV Unit Costs
 Level 2: \$0.4 to \$43 per gpd treated
 - $_{\rm o}$ Level 3: \$2.9 to \$46 per gpd treated

Load Reduction with Respect to Current Discharge:

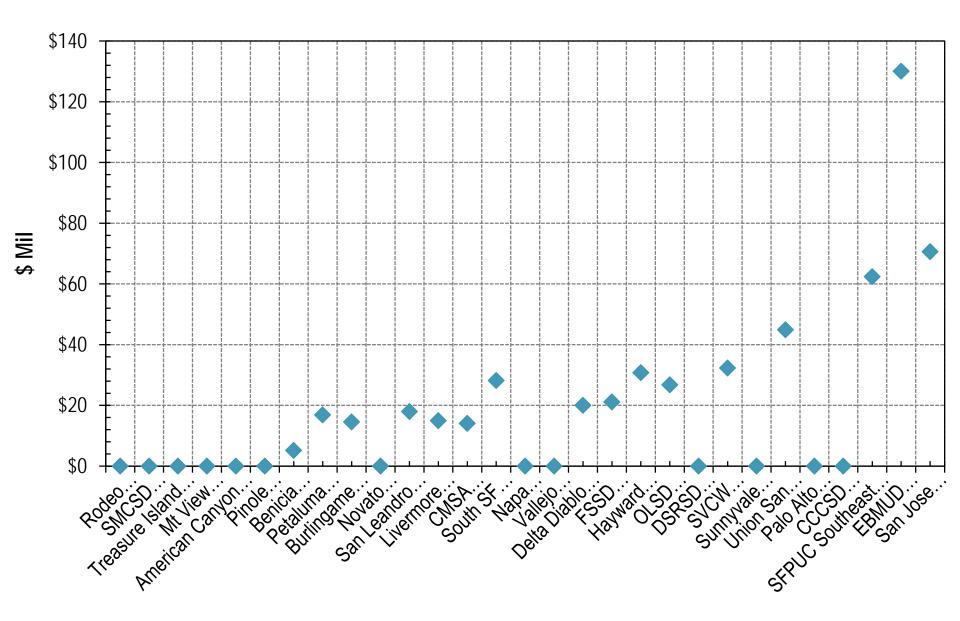
- Level 2 and 3: >90% for Ammonia
- Level 2: about 55-60% for TN and TP
- Level 3: about 80-85% for TN and TP


Sidestream Approach

Basis of Evaluation

- $_{\circ}~$ Identify upgrade strategies to reduce nutrients
- Planning Period: 30 Years
- Loading: Design Capacity
- Design Criteria:
 - Year-round sidestream
 - Sufficient Dewatering Frequency (>4 days/week)
 - Water temperature governs technology selection

Concepts


- Ammonia/TN Removal:
 - Conventional nitrification technology
 - Deammonification technology
- TP Removal: metal salt precipitation
- Acknowledgements
 - $_{\circ}\,$ EPA Regional Grant led by EBMUD
 - Agencies that hosted pilots

DRAFT Plants Eligible for Sidestream Treatment by Subembayment

Subembayment	No. Plants Eligible for Ammonia Discharge Reduction to the Bay	No. Plants Eligible for Total Nitrogen Discharge Reduction to the Bay
Suisun Bay	1	2
San Pablo Bay	1	4
Central Bay	6	6
South Bay	11	11
Lower South Bay	0	2
Total	19	25

DRAFT Total PV Costs for Sidestream

DRAFT Sidestream Findings for the 29 Plants

- Criteria used for screening:
 - Year-round sidestream
 - Year-round discharge
 - Sufficient dewatering frequency (>4 days/week)
- Number of candidate plants
 - o 19 out of 37 plants if ammonia reduction is the discharge objective
 - 25 out of 37 plants if TN reduction is the discharge objective
- Costs
 - The Total PV costs is \$550M
 - Flow-weighted average = \$1.9/lb N removed
- The overall Ammonia/TN load reduction from Current Discharge is 22 and 17 percent, respectively

Summary of DRAFT Dry Results (Represents 29 Plants)

Parameter	Units	Optimization	Sidestream	Level 2	Level 3
Planning Horizon	Years	10	30	30	30
Total PV Cost	\$ Mil	171	550	5,575	7,310
Total PV Range per Plant	\$ Mil	0.6 – 24	5.1 – 130	10.9 – 1,560	16 – 1,740
TN Load Reduction	lb N/d	15,500	17,800–21,200	86,100	124,100
TN Load Reduction Range	lb N/d	20 - 6,500	70 – 8,600	10 – 25,100	30 - 31,500
TN Load Reduction Ave	%	14	17 - 22	58	83
Unit Total PV Cost Range	\$/gpd	0.1 – 2.8		0.8 – 29	3.0 – 32
Unit Total PV Cost Flow- Weighted Average	\$/gpd	0.4		7.5	9.8
Unit TN Cost Range	\$/lb N	0.4 – 8.2*	1.2 – 6.5	1.1 – 164	1.7 – 178
Unit TN Cost Flow- Weighted Average	\$/lb N	1.6*	1.9	5.8**	8.3
* Excludes Benicia			Δ	Il roculto oro	nroliminory

** Excludes Sunnyvale and San Jose

Summary of DRAFT Dry Results (Represents 29 Plants)

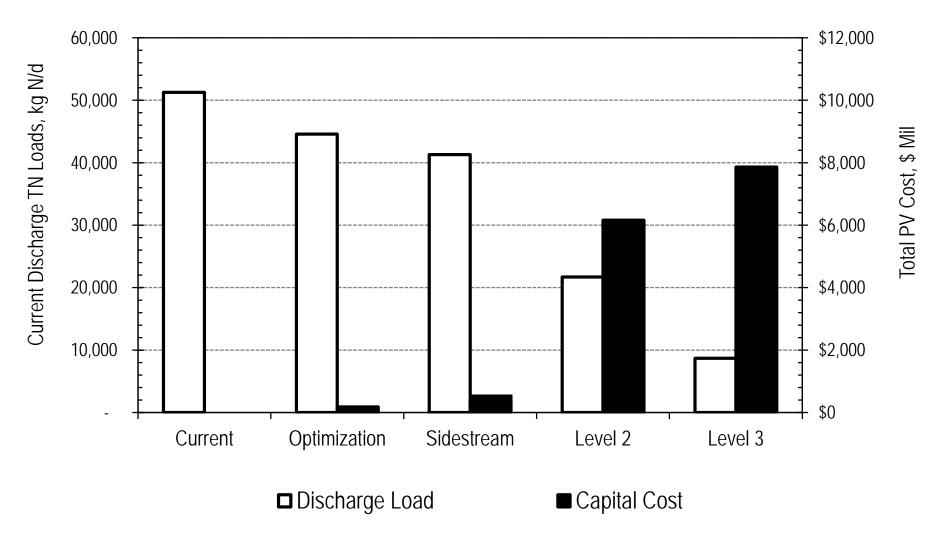
Parameter	Units	Optimization	Sidestream	Level 2	Level 3
Planning Horizon	Years	10	30	30	30
Total PV Cost	\$ Mil	171	550	5,575	7,310
Total PV Range per Plant	\$ Mil	0.6 – 24	5.1 – 130	10.9 – 1,560	16 – 1,740
TN Load Reduction	lb N/d	15,500	17,800–21,200	86,100	124,100
TN Load Reduction Range	lb N/d	20 – 6,500	70 – 8,600	10 – 25,100	30 – 31,500
TN Load Reduction Ave	%	14	17 - 22	58	83
Unit Total PV Cost Range	\$/gpd	0.1 – 2.8		0.8 – 29	3.0 – 32
Unit Total PV Cost Flow- Weighted Average	\$/gpd	0.4		7.5	9.8
Unit TN Cost Range	\$/lb N	0.4 - 8.2*	1.2 – 6.5	1.1 – 164	1.7 – 178
Unit TN Cost Flow- Weighted Average	\$/lb N	1.6*	1.9	5.8**	8.3
* Excludes Benicia			Δ	ll rosults aro	proliminary

** Excludes Sunnyvale and San Jose

Summary of DRAFT Wet Results (Represents 29 Plants)

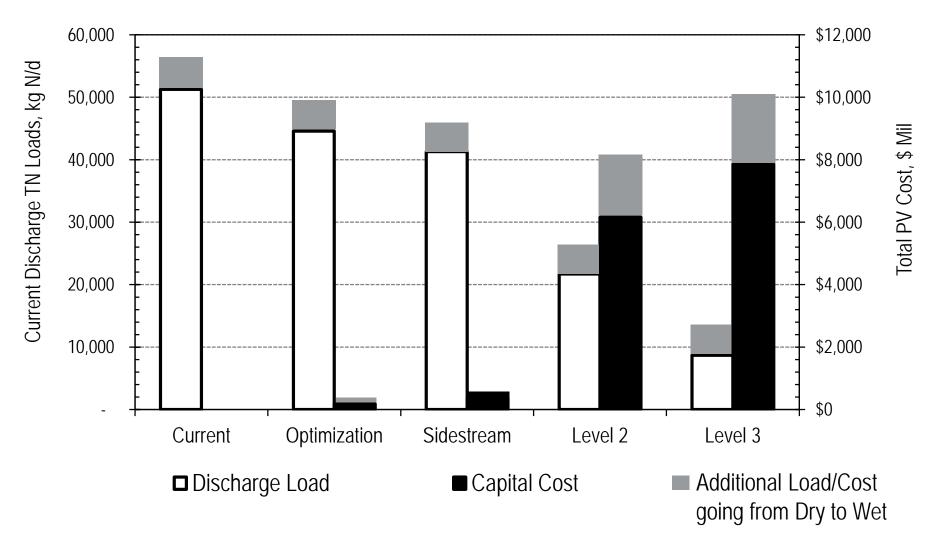
Parameter	Units	Optimization	Sidestream	Level 2	Level 3
Planning Horizon	Years	10	30	30	30
Total PV Cost	\$ Mil	212	415	7,060	8,980
Total PV Range per Plant	\$ Mil	0.6 – 24	5.1 – 130	3.5 - 2,240	23 – 2,470
TN Load Reduction	lb N/d	18,000	17,800–21,200	86,400	131,500
TN Load Reduction Range	lb N/d	20 – 6,100	70 – 8,600	10 – 25,100	30 – 31,500
TN Load Reduction Ave	%	14	17 - 22	62	85
Unit Total PV Cost Range	\$/gpd	0.2 – 3.4		0.4 – 43	2.9 – 46
Unit Total PV Cost Flow-	\$/gpd	0.4		8.4	10.8
Weighted Average					
Unit TN Cost Range	\$/lb N	0.3 – 32*	1.2 – 6.5	0.5 – 104	1.5 – 57
Unit TN Cost Flow-	\$/lb N	2.3*	1.9	6.5**	5.6
Weighted Average					
* Excludes Benicia					

* Excludes Benicia


* Excludes Sunnyvale and San Jose

Summary of DRAFT Wet Results (Represents 29 Plants)

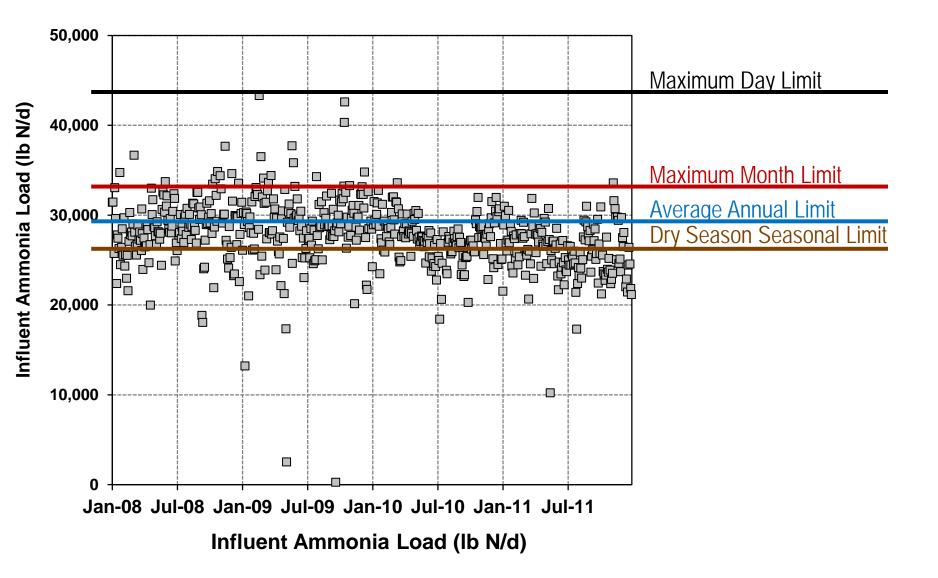
Parameter	Units	Optimization	Sidestream	Level 2	Level 3
Planning Horizon	Years	10	30	30	30
Total PV Cost	\$ Mil	212	415	7, 060	8,980
Total PV Range per Plant	\$ Mil	0.6 – 24	5.1 – 130	3.5 - 2,240	23 – 2,470
TN Load Reduction	lb N/d	18,000	17,800–21,200	86,400	131,500
TN Load Reduction Range	lb N/d	20 – 6,100	70 – 8,600	10 – 25,100	30 – 31,500
TN Load Reduction Ave	%	14	17 - 22	62	85
Unit Total PV Cost Range	\$/gpd	0.2 – 3.4		0.4 – 43	2.9 – 46
Unit Total PV Cost Flow- Weighted Average	\$/gpd	0.4		8.4	10.8
Unit TN Cost Range	\$/lb N	0.3 – 32*	1.2 – 6.5	0.5 – 104	1.5 – 57
Unit TN Cost Flow- Weighted Average	\$/lb N	2.3*	1.9	6.5**	5.6
* Excludes Benicia					


** Excludes Sunnyvale and San Jose

DRAFT: Projecting Baywide Preliminary Total N Results (Dry Season)

- Optimization = 10-yr planning horizon
- Sidestream and Upgrades (Level 2 and 3) = 30-yr planning horizon

DRAFT: Projecting Baywide Preliminary Total N Results (Dry plus Wet Season)



- Optimization = 10-yr planning horizon
- Sidestream and Upgrades (Level 2 and 3) = 30-yr planning horizon

Role of Averaging Periods

Importance of Averaging Periods

Role of Averaging Periods on SRT and Basin Volume

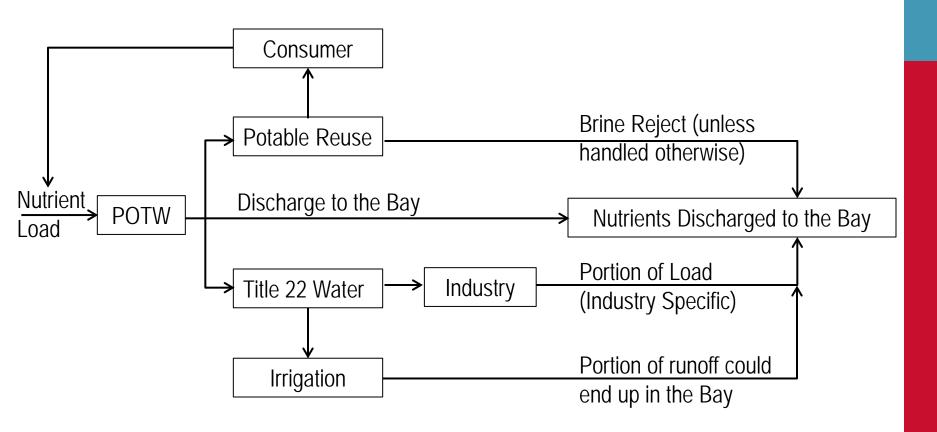
Averaging Periods Govern the SRT and Overall Basin Volume

Role of Averaging Periods on Cost: Oro Loma for Level 3

Parameter	Units		Dry Season		Wet Season					
		Ave Annual	Max Month	Max Day	Ave Annual	Max Month	Max Day			
Capital PV	\$ Mil	60	68	84	66	73	110			
O&M	\$ Mil /yr	5.7	6.0	6.3	6.1	6.6	7.1			
O&M PV	&M PV \$ Mil		134	140	137	147	159			
Total PV	\$ Mil	190	202	224	203	221	267			
NH4 Load Reduction *	%	97	99	>99	92	99	>99			

* Based on 6-years historical data from Hampton Roads Sanitation District VIP Plant

Nutrient Load Reduction by Other Means


- A	В	С	D	E	F	G	Н	I	J	К	L	M	N	0	P	Q
1	BACWA R	ecycled	Wate	er Surv	ey 201	5										
2	Agency Nar	me (Recycle	d Water	Producer):	1											
3		led Water Di														
4	CURRENT AND PROJECTED FUTURE AMOUNT OF RECYCLED WATER BY USE CATEGORY (in acre-feet)															
5		Total Distribute	Confidence (see Note B)	Golf Course Irrigation (See Note C)	Landscape (see Note D	Commercial (see Note E)	Industrial (see Note F)	Agricultural (see Note G)	Environmental Enhancement (see Note H)	Internal Use (see Note I)	GW Recharge for Indirect Potable Reuse	Surface Water Augmentation	Direct Potable Reuse	Other Non- potable Reuse (See Note J)	RO concentrate or other return	Comments
6	Type of RW (See	e Note A):														
7	Current			0	0	0	0	0	0	0	0	0	0	0	0	
8	Future															
9	Future															
10	Future															
11	Future															
12	Future															
13	Future															
14	2015 MONTHL	Y RECYCLED	WATER	DISTRIBUTI	ON DATA B	Y USE CATE	GORY (in ac	re-feet)								
 [V//////	Golf			Industria		Environ.	Internal	GV	Surface	Direct	Other	Return	
15		TOTAL		Course	pe	cial	I I	ural	Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
6	January		V//////													
7	February		V//////													
8	March		V//////													
	April		V//////													
20	May		V//////													
	June															
22	July		V//////													
23	August															
24	September		V//////													
	October															
	November															
27	December		V//////	1												
28	TOTAL															
	▲ ▶ ► Data / README / Potable Reuse Definitions / *															

Recycled Water Survey

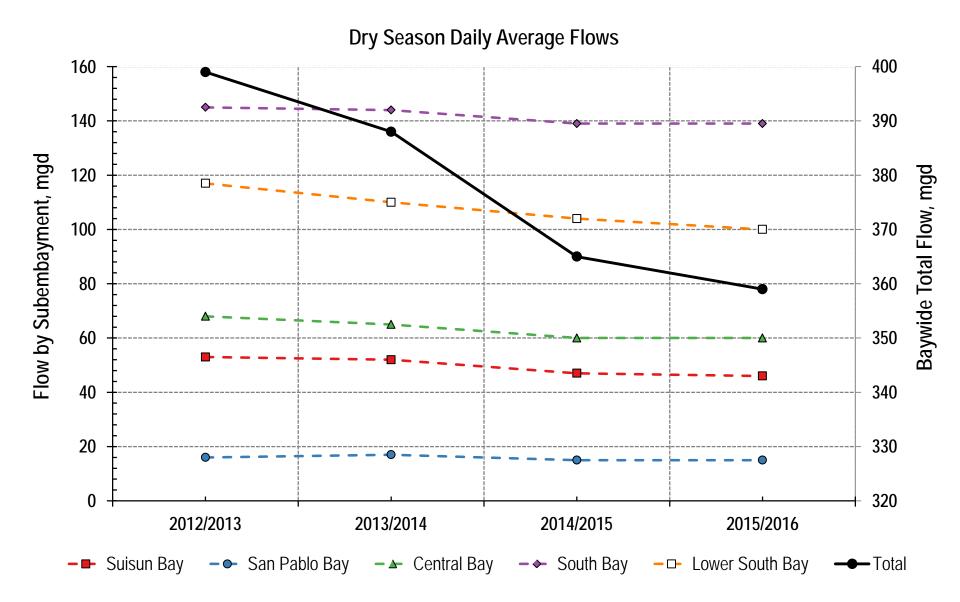
Preliminary Recycled Water Survey Results Distribution

- Overall: About half of the plants have completed the surveys (22).
- We are still quantifying the water uses (purple pipe vs potable reuse) and where the loads end up

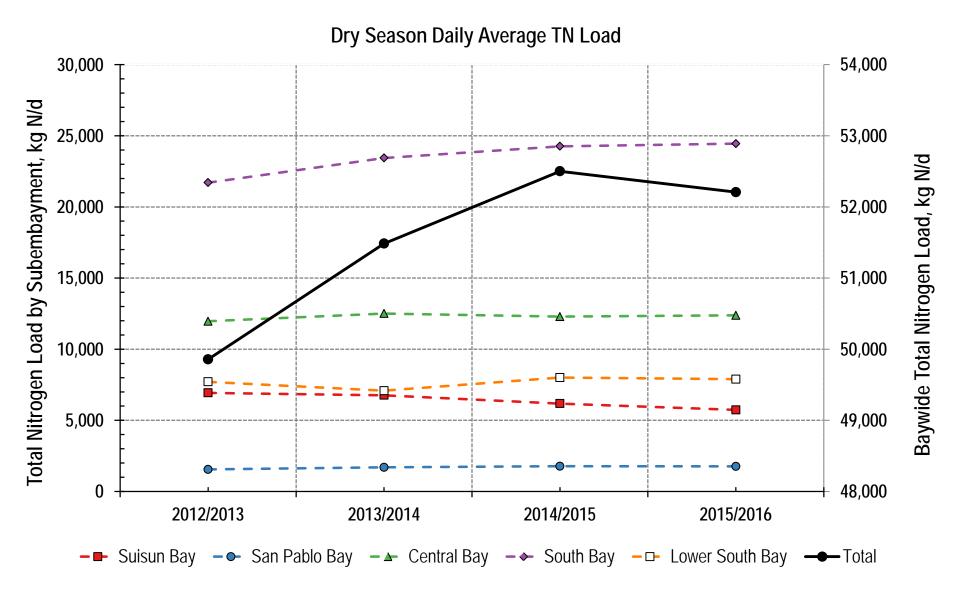
Fate of Nutrients that Exit a POTW (Excludes Biosolids)

City of Benicia: Recycled Water Project

Produce up to 2,200 AFY (~2mgd) of Title 22 Recycled Water at the City's WWTP for use as cooling tower makeup water at the Valero Benicia Refinery and irrigation water for City customers


Group Annual Report (GAR) Submitted on 9/30/2016

2016 Group Annual Report: Changes from 2015 Submittal



- Provided Input:
 - SRP Terminology / Data Reporting
 - Dissolved orthophosphate
 - Recycled Water Data Collection
- Used the template to streamline 2016 data collection
- Raw influent data collected to avoid misinterpretation of flow and load data
- Added the percent change in slope with respect to initial three years of data
- Next year: refine the statistical approach

2016 GAR Results (Flow)

2016 GAR Results (TN Load)

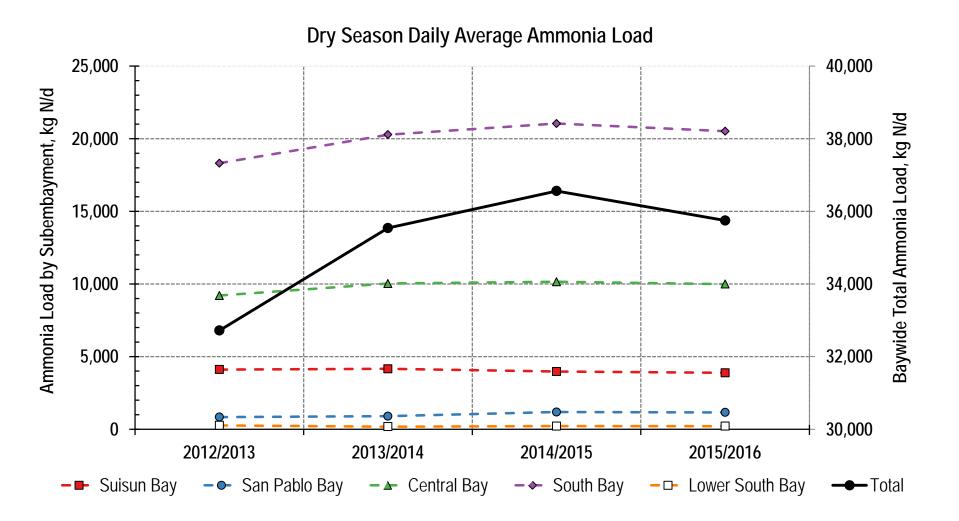
Schedule

- Complete all draft reports by March 31, 2017
- Address comments and submit updated plant reports by July 31, 2017
- Prepare draft summary report by September 30, 2017

DRAFT: Summary of Draft Report Findings

- 29 out of 37 plants have been analyzed.
 - We anticipate changes to each plant's draft report based on plant provided comments (after draft reports are all released).
 - The evaluation is not intended to serve as a pre-design. The concepts are all plant specific that will require more detailed analysis to verify/confirm any report findings.
- Findings from the 29 plants evaluated thus far:
 - o Ammonia removal is the most difficult and expensive of the nutrients evaluated
 - Costs increase with each treatment level and the wet season is typically more expensive than dry.
 - Nutrient load reduction increases with treatment level
- Draft Costs for the 29 plants evaluated thus far:
 - Optimization: the Total PV costs are \$171M to \$212M for dry and wet, respectively
 Sidestream: the Total PV costs are \$550M
 - $_{\rm o}$ Upgrades: Total PV costs range from \$5.6B for Level 2 dry to \$9.0B for Level 3 wet
- The final results will provide information in parallel with the science plan to assist with making informed management/policy decisions

BACWA Annual Meeting


27 January 2017

Hip Pocket

2016 GAR Results (Ammonia Load)

