

Asset Management Info Sharing Group Agenda

Thu, Feb. 4, 2015 11:10 am - 1:00 pm EBMUD

Please e-mail the Chair, Dana Lawson, at dlawson@centralsan.org to be added to the e-mail list for future meetings.

Meeting Notes

INTRODUCTIONS

 David Williams (BACWA); Dana Lawson, PJ Turnham (CCCSD); Aaron Johnson (DSRSD); David Stoops (EBDA); Dillon Cowan (EBMUD); Robin Gamble (Napa Sanitation District); Paul Bonitz (SFPUC); Saeed Shams (City of San Jose WPCP); Felicia James, Rob Grantham (Carollo Engineers)

PRESENTATION

- 2. Condition Assessment of Pumping Stations (Dillon Cowan, EBMUD)
 - Staff defined the extent of the assessment and level of detail; considered staff expertise, availability and scheduling; approach included a multi-disciplined team (ops, maint, and engineering), mostly in-house with some specialty work contracted out; comprehensive evaluation of entire pumping station included simple visual assessment, basic functional test, interview of staff; CMMS audit for inventory, PM plan, trends in WO history; exercised gates and valves; evaluated data to prioritize and recommend capital replacements; also included O&M recommendations.

DISCUSSION

- 3. Lifecycle/ service life estimates for assets
 - Sample data provided from: EBDA, CCCSD, EPA asset management seminar, WERF SIMPLE tool
 - o David Stoops shared sample data with the group, explained how he uses his spreadsheet for budgeting (3 year rolling budget, up to 30 year budget).
 - Dana Lawson shared sample data with group from CCCSD, explained how some assets were adjusted beyond industry standards because redundant assets share runtime. For example, CCCSD has A- and B-side power distribution systems and breakers installed with the plant expansion in the late 70s are now under-going a class 1 reconditioning instead of a replacement. Industry standard is about a 20 year service life, however we've adjusted ours to 40 years then reconditioning to extend the service life further.
 - Group also discussed how to account for rehab cycles instead of full replacement cost, what assets can be rehabbed, at what cost and for what extension of service life (will be discussed more in the future).

SUGGESTIONS FOR FUTURE AGENDA ITEMS

- Comprehensive schedule for condition assessment of all asset classes
- Replacement versus asset cost estimating
- Modifying planned maintenance schedules based on condition assessments, optimizing maintenance (may be more appropriate for maintenance infoshare group)

NEXT REGULAR MEETING

- 4. May 2016 at DSRSD with a presentation by David Stoops for estimating long-term capital budgets and Felicia James for Reva software as a tool for long-term capital budgeting.
- 5. Dana Lawson will follow-up with DSRSD, David Stoops and Felicia to coordinate date in May.

ADJOURNMENT 1:00PM

Pump Station Risk Assessment

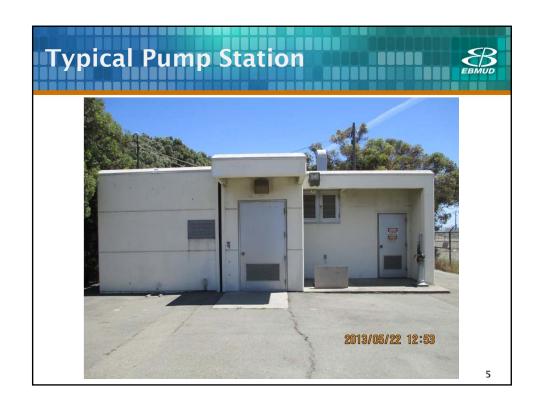
Dillon Cowan
Associate Civil Engineer

About EBMUD Wastewater Service Area

- · 88 square miles (325 sq. miles in Water System)
- · 650,000 people (1.3 million in Water System)
- Services provided to seven communities
 - Alameda
 - Albany
 - Berkeley
 - Emeryville
 - Oakland
 - Piedmont
 - Stege Sanitary District

About EBMUD Key Wastewater Infrastructure

- Main Wastewater Treatment Plant (MWWTP) in Oakland
- · Three wet weather facilities
- · 15 pump stations
 - 9 miles of force mains
- EBMUD owns and operates large interceptor sewers
 - 29 miles of gravity interceptors
 - Stormwater "not included"
- Communities own their collection systems
 - ~1,600 miles of pipe



3

About EBMUD Wastewater Pump Stations

- · 15 pump stations
 - 13 lift flow into EBMUD interceptors
 - 1 lifts flow on EBMUD interceptor
 - 1 wet weather diversion station
- Design capacities range from 0.5 to 66 MGD (avg 10.5); most (9) are in the 2 to 8 MGD range

Defining Risk

Risk = Likelihood x Consequence

7

Calculating Risk

Definition of risk is simple, but

- How do you come up with scores or ratings for likelihood and consequence?
- What factors should you consider?
- Where will you get the data?

Condition assessment lays the foundation for risk assessment

Key Decisions

- · Decide who will do the work
- · Define the scope of the assessment
- Determine the level of detail/sophistication

NOTE: there is no one right way to approach pump station condition assessment

q

Potential Scope of Work

- Main pumps and motors
- · Auxiliary pumps
- · Fans
- Transformers
- Motor Control Centers
- · VFDs
- Compressors

- Chemical tanks & dosing systems
- Emergency generators
- · Safety equipment
- Instrumentation
- Building/structure
- $\cdot \ Landscaping$
- · Gates and fences

Potential Assessment Techniques

- · Visual inspection
- · Functional tests
- · Performance tests
- Monitoring
- Review/audit of maintenance records and practices

11

Factors to Consider

- · Staff expertise
- · Staff availability
- · Regulatory issues
- · Management priorities
- · Deadlines/schedule constraints
- Potential conflicts with other projects
- · Budget available

EBMUD Approach

- Majority of work performed by EBMUD staff
- · Multi-disciplinary team approach
- · Comprehensive assessment
- Techniques used:
 - Simple visual inspection (EBMUD)
 - Basic functional tests (EBMUD)
 - Pump performance tests (consultant)
 - Thorough CMMS audit (EBMUD)

13

Schedule

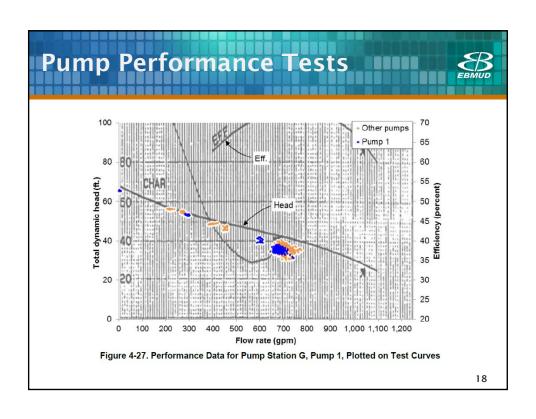
- Visual inspections performed during Summer/Fall of 2013
- Standing weekly appointment with team members
- Inspection time per station: 1-2 hours
- Documentation completed in 2014

The Team

- Inspection led by engineer from Treatment Division
- · Key participants
 - Operators
 - Mechanics
 - Electricians
 - Instrument technicians
 - Painters
 - Operations and Maintenance supervisors
 - Planning Section engineers

15

Visual Inspection



- General assessment of building and surrounding area
- · Identification of safety concerns
- Observation of pumps for noise, vibration, leaks, etc. during operation
- · Visual assessment of all assets
- · Photo documentation of all assets

Functional Tests

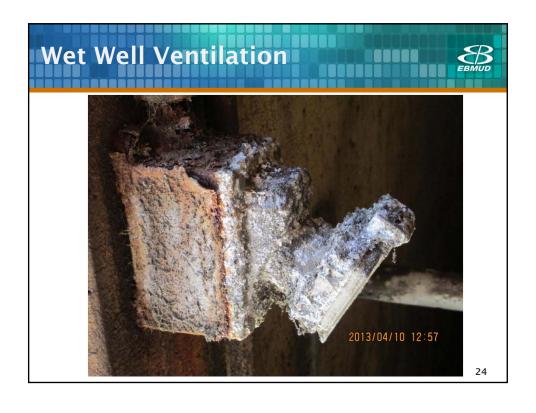
- All gates and valves exercised to verify proper operation
- Where possible, instruments tested to verify proper operation

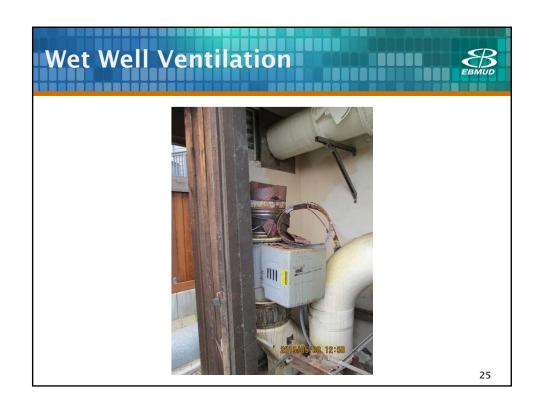
CMMS Audit

- · Verification of asset registry
 - Add new/missing equipment
 - Remove old equipment
- · Review of preventative maintenance
 - Determine 5-yr PM completion rates
 - Identify and address gaps in PM schedule
 - Correct errors and inconsistencies
- · Review of corrective maintenance

19

Findings - Visual Inspections




- Overall, pump stations in good condition
- · Problem areas at some stations:
 - Paint/coatings
 - Wet well ventilation
- Several safety issues identified and addressed
- No conditions identified that would present potential for an SSO

Findings – Functional & Performance Tests

- Very few valves found to be inoperable or not functioning correctly
- Work orders submitted for all valve problems
- Known pump performance problems confirmed
- Many older pumps performing better than expected, on or near original curve

29

Findings - CMMS Audit

- Edits made to asset registry at every station
- Edits made to PM schedules at every station
- High completion rates for mechanical and instrumentation PMs
- Low completion rates for electrical PMs
- Unable to determine completion rates for operations PMs

Follow-through

- · 128 issues documented during inspection
- O&M supervisors met together to determine appropriate action for each issue:
 - Submit work order request (68)
 - No action (23)
 - Defer until next station upgrade (22)
 - Investigate further (8)
 - Other (7)

31

Risk Assessment DANGER 2013/105/12 13:13 32

Defining Risk

Risk = Likelihood x Consequence

33

Risk Assessment

- Computed risk score for major assets at every station
- Used adapted EPA model to compute scores
- Planning Section used condition assessment data to compute risk scores for pump stations as part of master plan update (separate project)

Likelihood of Failure

Likelihood of failure based on:

- Estimated effective life
- Preventative maintenance history
- Condition rating
- Performance rating
- Reliability rating
- Effective life adjustment factor

35

Estimated Effective Life

- · Based on type of asset
- · Examples:
 - Main Pumps (40 yrs)
 - Motors (35 yrs)
 - Valves (30 yrs)
 - Controls (25 yrs)
 - Electrical (35 yrs)
- Adjusted as necessary based on input from maintenance supervisors

Preventative Maintenance History

- Does the equipment have adequate PMs?
- Are the PMs being completed as scheduled?

37

Condition Rating

- 1 new or excellent condition
- 3 minor defects only
- 5 moderate deterioration
- 7 significant deterioration
- 9 virtually unserviceable
- 10 unserviceable

Performance Rating

- 1 exceeds/meets all performance targets
- 2 minor performance deficiencies
- 3 considerable performance deficiencies
- 4 major performance deficiencies
- 5 does not meet any performance targets

30

Reliability Rating

- 1 as specified by manufacturer
- 2 random breakdown (every 20 yrs)
- 3 occasional breakdown (every 5 yrs)
- 4 periodic breakdown (every 2 yrs)
- 5 continuous breakdown

Effective Life Adjustment Factor

Based on condition, performance, and reliability ratings and PM robustness, is the estimated effective life reasonable?

If not, apply effective life adjustment factor

Effective Life Adjustment Factor

Example adjustment factors:

- Low PM completion rate (-20%)
- No bar screen and history of ragging/debris problems (-20%)
- Poor condition of protective coating (-10 to -30%)
- Pattern of frequent breakdowns (-10 to -60%)
- Age of asset suggests near end of useful life, but no signs of imminent failure (20%)

Remaining Useful Life

Example

- Pump has effective life of 40 yrs
- Pump installed in 1995 (20 yrs old)
- No bar screen and history of ragging problems (-20% reduction)

Remaining Useful Life = 0.8*40 - 20 = 12 yrs

43

Likelihood Score

$$L_f = Max \left[10\left(1 - \frac{U}{E}\right), 1\right]$$

Where U = remaining useful life and E = estimated effective life

Example

Pump from previous slide has estimated effective life (E) of 40 yrs and remaining useful life (U) of 12 yrs

$$L_f = Max \left[10 \left(1 - \frac{U}{E} \right), 1 \right] =$$

$$Max \left[10 \left(1 - \frac{12}{40} \right), 1 \right] = 7$$

45

Consequence of Failure

Score based on four impact criteria:

- Service
- Safety
- Economic
- Environmental

Service Criteria Scoring

- 10 cannot be out of service one hour
- 9 cannot be out of service 8 hours
- 7 cannot be out of service one day
- 5 cannot be out of service one week
- 3 cannot be out of service one month
- 1 can be out of service indefinitely

47

Safety Criteria Scoring

- 10 Substantial death, widespread injury, and sickness
- 9 Major injury, sickness, some death
- 7 Moderate injury and some sickness
- 5 Minor injury
- 3 Minor inconvenience
- 1 No impact

Economic Criteria Scoring

- 10 Likely to trigger rate increase, staff changes
- 9 painful change of priorities
- 7 high cost, high hassle, diverts money
- 5 high cost, low hassle
- 3 low cost, high hassle
- 1 low cost, low hassle

49

Environmental Criteria Scoring

- 10 sustained, large quantity, offsite, many complaints
- 9 has not happened on this scale before
- 7 substantial liability, many impacted
- 5 aggressive complaints and liability
- 3 backups, small number of complaints
- 1 short duration, small quantity, onsite, no complaints

Consequence Scores

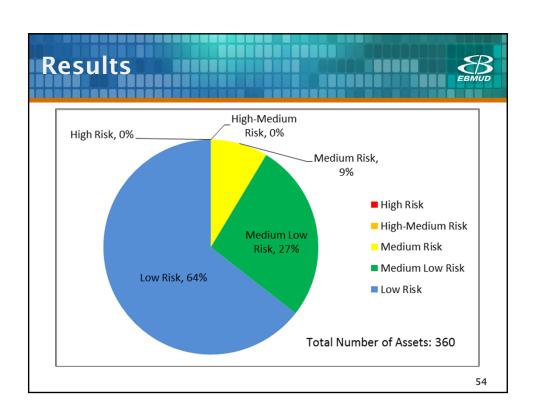
- · Sum of four criteria scores, evenly weighted
- Scoring range converted from 4-40 to 1-10

51

Total Risk Score

- Product of likelihood and consequence scores (range: 1-100)
- Use adjustment factor to lower risk scores for redundant equipment

Total Risk Ratings


• **High**: risk score > 80

• **High-medium**: 60 < risk score < 80

• Medium: 40 < risk score < 60

• Medium-low: 20< risk score < 40

• Low: risk score < 20

Recommendations

- Replacement of some assets with high likelihood of failure (4 VFDs, 2 transfer switches)
- Major rehabilitation of station constructed in 1950s
- Comprehensive paint/coating assessment

55

Recommendations

- Focus on complete documentation and implementation of PM program
- Capture condition data on an ongoing basis during PMs
- Perform annual review of CMMS database
- Based on annual CMMS reviews, update risk assessment and optimize PM program

SAMPLE

					Total		Average							
				F	Replacement	Re	eplacement	Expected	Rehab				Consequence of	V.
	Class ID	Asset Class	Count		Cost		Cost	Life	Interval	Rehab Desc	2.0	\$	Failure	Туре
PIPELINE														
	FM	Forcemain	36	\$		\$	6,253,687	80		Inspect		5%		Pipeline
	MH	Manhole	28	\$	2,100,000	\$	75,000	80		Inspect		10%		Pipeline
	ARV	Air Releif Valve	27	\$	112,000	\$	4,148	20	5	Rehab	Will Cold	10%	1	Pipeline
IVIL / SITE	615			_							_	STATE OF		
	BLD	Building	4	\$		\$	5,764,700	60		Painting / Roof	\$	45,000		Civil
	OFFICE	Office Building	1	\$		\$	750,000	60	1000	Tenant Improvement		5%		Civil
	ww	Wet Well	5	\$		\$	590,000	80		Inspect/ Rehab		5%		Civil
	ST	Surge Tower	4	\$	8,000,000	\$	2,000,000	60		Repairs		5%		Civil
	STR	Structure	4	\$	4,552,764	\$	1,138,191	60	12.000	Rehab		25%		Civil
	YP	Yard Piping	6	\$	1,957,500	\$	326,250	60		Inspect / Repair		15%		Civil
	PAV	Pavement	2	\$	10,000	\$	5,000	60		Rehab		10%		Civil
	FNC	Fencing	2	\$	22,000	\$	11,000	20	2	Repairs		20%	1	Civil
LEC / INST														
	SCD	SCADA	7	\$			24,779	10		Rehab/ Update		50%	0.00	Elec/In
	ANL	Analyzer	4	\$		\$	13,750	10		Inspect/ Testing		2%		Elec/In
	FLM	Flow Meter	9	\$		\$	16,035	10		Rehab/ Update		50%		Elec/In
	SMP	Sampler	2	\$		\$	4,537	10	55	Rehab/ Update		50%		Elec/In
	CPU	Computer Equipment / Software	19	\$		\$	3,935	5		Software Update		10%		Elec/In
	INST	Instruments	15	\$		\$	8,274	10	4.08	Rehab/ Update		50%	100	Elec/In
	MCC	Motor Control Center	9	\$		\$	94,744	40	1. 0.000	Inspect/ Testing		10%		Elec/In
	EFM	Motor - Effluent	16	\$		\$	30,610	40		Rehab	\$	5,000		Elec/In
	MDM	Motor - Medium	6	\$		\$	6,198	20	25255	Rehab		5000	3	Elec/In
	SM	Motor - Small	4	\$		\$	3,027	10		Rehab		2000	2	Elec/In
	TR	Transformer	2	\$		\$	50,026	30	-	Inspect/ Testing		10%	3	Elec/In
	TSW	Transfer Switch	5	\$		\$	11,751	20		Inspect/ Testing		25%	4	Elec/In
	PNL	Panel	16	\$		\$	32,396	20		Inspect/ Testing		10%	3	Elec/In
	PLC	Programmable Logic Controller	5	\$		\$	9,820	10		Software Update		50%	5	Elec/In
	VFD	Variable Frequency Drive	16	\$	582,820	\$	36,426	20	5	Inspect/ Testing		25%	3	Elec/In
MECHANICAL				Idi										
	CRN	Overhead Crane	1	\$		\$	116,651	30	100	Certification	\$	10,000		Mech
	HC	Hoist / Crane	5	\$		\$	6,616	30		Rehab		20%	1	Mech
	LV	Valve - Large	52	\$		\$	37,346	50	25	Rehab		50%	3	Mech
	MV	Valve - Medium	2	\$		\$	6,913	20	10	Rehab		50%	2	Mech
	AVA	Automatic Valve Actuator	9	\$		\$	6,287	30	5	Rehab		25%	2	Mech
	CMP	Compressor	3	\$		\$	2,861	15	5	Rehab		25%	1	Mech
	DS	Drive Shaft	12	\$		\$	5,588	40	25	Rehab		30%		Mech
	GEN	Genset	7	\$		\$	102,353	30	15	Rehab		30%	4	Mech
	EFP	Pump - Effluent	18	\$	1,786,029	\$	99,224	40	20	Major Rehab		30%	3	Mech
	MP	Pump - Medium	12	\$	123,785	\$	10,315	25	15	Rebuild		40%		Mech
	SP	Pump - Small	11	\$	55,995	\$	5,090	15	10	Rebuild		20%		Mech
	SG	Gate - Sluice or Slide	20	\$	857,565	\$	42,878	60	30	Rehab		40%	3	Mech
	BAS	Bio Assay System	1	\$	34,030	\$	34,030	10	3	Rehab		33%	1	Mech
	CPS	Cathodic Protection System	1	\$	10,000	\$	10,000	30	10	Sac Anodes	\$	5,000	:	Mech
	EGT	Electric Entry Gate	1	\$	15,000	\$	15,000	30		Rehab		10%	1	Mech
	GB	Gearbox	4	\$	560,000	\$	140,000	40	20	Rebuild		40%		Mech
	HEX	Heat Exchanger	2	\$	93,511	\$	46,756	30	5	Rebuild		20%		Mech
	HVAC	HVAC System / Components	5	\$	47,250	\$	9,450	15	5	Rehab		33%		2 Mech
	MX	Mixer	2	\$	46,264	\$	23,132	40	20	Rebuild		20%		2 Mech
	ITK	Tank - Indoor	4	\$	67,198	\$	16,799	40	10	Rehab		15%		Mech
	ОТК	Tank - Outdoor	2	\$	18,000	\$	9,000	20	5	Rehab		10%		2 Mech
	UTK	Tank - Underground	2	\$		\$	27,545	30		Inspection		8%		1 Mech
	VEH	Vehicle	1	\$	21,762	\$	21,762	8	2	Inspect/ Testing		5%		Mech

APPENDIX 10

EXPECTED USEFUL LIFE OF CAPITAL PROJECTS

The estimated useful life of the MWRA's capital projects are summarized below:

Type of Capital Improvement	Estimated Useful Life (in years)
Buildings (includes all substantial above ground structures or enclosures)	40
Mechanical Equipment (includes pumps, chains, fans, HVAC, valves, etc.)	20
Electrical Equipment (motors, generators, motor control centers, lighting, conduit, etc)	20
Control Systems (computers, SCADA, PLCs, programming, etc)	10
Water Pipes	50 – 75
Water Pipe appurtenances (blow offs, air valves)	40
Sewer Pipes – gravity	50
Sewer Pipes – pressure	50
Sewer Pipe appurtenances (manholes, chambers)	50
Tunnels – Water	100
Tunnels – Wastewater	100
Tunnel appurtenances (shafts, control valves)	40
Distribution Reservoirs – above ground	40
Distribution Reservoirs – below ground	75 -100
Dams and Dam improvements	100
Motor Vehicles	10 – 15
Furniture and Fixtures	5 – 15
Leasehold Improvements	Period of lease
Study	5
Design – if constructed	20
Design – if not used	5
Inflow/Infiltration - Repair	20
Inflow/Infiltration - Replacement	50
Covered Storage	50

SAMPLE

Nominal Life Expectancy for Building Components

Building System	<u>Page</u>
A. HVAC	2
B. Elevator/Escalator	6
C. Plumbing	7
D. Roofing	8
E. Electrical	10
F. Fire/Life/Safety/Security System	11
G. Interior Finishes	12
H. Structural	14
I. Parking Decks – Structured	15

A. HVAC		YEARS
a. Air (Conditioner	
j	i. Window Unit	10
ii	i. Residential Single or Split Package	15
jii	i. Commercial Through-the-Wall	10
iv	v. Water-Cooled Package	15
V	v. Computer Room Unit	15
b. Air l	Handling Units	
j	i. Built-Up	30
ii	i. Packaged	25
c. Hea	t Pumps	
Ì	i. Residential Air-to-Air	12
ji	i. Commercial Air-to-Air	15
iii	i. Commercial Water-to-Air	18
d. Roo	f-Top Air Conditioners	
j	i. Single Zone	15
ji	i. Multi-zone	15
1ii	i. VAV	15
e. Boile	ers, Hot Water	
j	i. Steel Water-Tube	24
ii	i. Steel Fire-tube	25
iii	i. Cast Iron	35
iv	v. Electric	15
f. Boile	ers, Steam	
į	i. Steel Water-Tube	28
i	i. Steel Fire-Tube	25
iii	i. Cast Iron	30
iv	v. Electric	15
V	v. Burners	18
g. Furr	naces	
j	i. Gas Fired	18
ii	i. Oil Fired	18
h. Unit	Heaters	
į	i. Gas	13

	ii.	Electric	10		
	iii.	Hot Water	20		
	iv.	Steam	19		
i.	Radia	nt Heaters			
	i.	Electric	10		
	ii.	Hot Water	25		
	iii.	Gas	18		
j.	Air Te	rminals			
	i.	Diffusers, Grilles, Registers	27		
	ii.	Induction Units	25		
	iii.	Fan-Coil Units	20		
	iv.	VAV Boxes Cooling Only	25		
	٧.	CAV Boxes	25		
	vi.	Double Duct Boxes	25		
	vii.	Fan Powered VAV Boxes	17		
	viii.	Variable Volume Temperature Boxes	15		
k.	Air Wa	ashers	15		
l.	Ductw	vork	30		
m.	Dampers				
n.	Fans				
	i.	Centrifugal	25		
	ii.	Axial	20		
	iii.	Propeller	15		
	iv.	Ventilating Roof-Mounted	20		
0.	Coils				
	i.	Direct Expansion	18		
	ii.	Water	18		
	iii.	Steam	22		
	iv.	Electric	12		
p.	Heat	Exchangers			
	i.	Commercial – Shell and Tube			
		 Steam to Domestic Water 	13		
		2. Steam to Heating Water	20		
		3. Water to Domestic Water	20		
		4. Water to Water	25		

SAMPLE

SAMPLE

SAMPLE	SAMPLI
SAMELE	SAMEL

	ii.	Residential Immersion Coil		25			
	iii.	Plate and Frame		25			
q.	Recip	rocating Air Compressors		15			
r.	Packa	age Chillers					
	i.	Reciprocating		20			
	ii.	Centrifugal		28			
	iii.	Absorption		30			
	iv.	Screw		20			
	٧.	Scroll		15			
s.	Coolir	Cooling Towers					
	i.	Galvanized Metal		18			
	ii.	Wood		20			
	iii.	Ceramic		34			
	iv.	Fiberglass		35			
t.	Cond	ensers					
	i.	Air-Cooled		20			
	ii.	Evaporative		15			
u.	. Insulation						
	i.	Molded		20			
	ii.	Blanket		24			
٧.	Pump	os					
	i.	Base Mounted		25			
	ii.	Pipe Mounted		10			
	iii.	Sump-Submerged		10			
	iv.	Well-Submerged		10			
	٧.	Condensate		15			
W.	Recip	rocating Engines					
	i.	Continuous Service		5			
	ii.	Back-Up Service		20			
Х.	Stean	n Turbines		30			
у.	Electr	ic Motors		18			
Z.	Motor	Starters		20			
aa.	Electr	ic Transformers					
	i.	Oil-Filled		30			
	ii.	Dry Type		30			

bb.	Contro	ols	
	i.	Pneumatic	18
	ii.	Electric	20
	iii.	Electronic	20
	iv.	Computer-Direct Digital Controls	20
cc.	Valve	Actuators	
	i.	Hydraulic	15
	ii.	Pneumatic	20
	iii.	Self-Contained	10
dd.	Damp	er Actuators	
	i.	Pneumatic	20
	ii.	Electric	18

ee. Heating and Cooling Piping System

SAMPLE

SAMPLE

30

B. Elevator/Escalator

a.	Elevator	
	i. Hydraulic	
	1. High Use	15
	2. Low Use	35
	ii. Gearless Traction	50
	iii. Geared Traction	
	1. High Use	20
	2. Low Use	35
	iv. Cab Interior Finish	10
	v. Carpet – Cab	0.5
b.	Escalator	40
C.	Controllers - Computer Based	20
Ч	Flevator Door Operations	20

_	_		_		
\boldsymbol{C}	Λ	n A	IΡ		
•	Δ	11	-	_	

C.	Plumbing

a.	Hot W	later Heaters	
	i.	Electric	10
	ii.	Oil Fired	10
	iii.	Gas Fired	10
b.	Flush	Valves	12
C.	Fixtur	es - Commercial	
	i.	Faucets	7
	ii.	Water Closets	30
	iii.	Urinals	30
	iv.	Sinks	30
d.	Pump	os	
	i.	Base Mounted	25
	ii.	Pipe Mounted	10
	iii.	Sewage Ejector	10
	iv.	Sump-Submerged	10
	٧.	Well-Submerged	10
e.	Backf	low Preventers	5
f.	Dome	estic Water Piping System	30

D. Rooning	D.	Roofing
------------	----	---------

a.	4-Ply	Built-Up	
	i.	Asphalt	
		 Flat (dead level) 	18
		2. Sloped (1/4 " per foot)	25
	ii.	Cold Tar	35
	iii.	Hot Applied Rubberized Asphalt	30
(Prote	ected M	lembrane Assembly)	
b.	Ply M	odified Bitumen (Mopped Down)	
	i.	Flat (dead level)	15
	ii.	Sloped (1/4" per foot)	20
C.	Single	e Ply	
	i.	EPDM	
		1. Flat (dead level)	5
		2. Sloped (1/4" per foot)	20
	ii.	Thermoplastic (Hypalon, PVC)	15
	iii.	Modified Bitumen (Touched On)	
		 Flat (dead level) 	10
		2. Sloped (1/4" per foot)	15
d.	Metal		
	i.	Structural Roof Panels (Prefinished Galv. Steel)	25
	ii.	Pre-manufactured Architectural Roof Panels	
		(Alum or Galvanized Steel)	25
	iii.	Custom Fabricated Standing Seam Roofing (Copper, Lead Coated Copper, Terne Coated	
		Stainless Steel)	75
	iv	Custom Fabricated Flat Seam (Copper, Lead	75
	IV.	Coated Copper, Terne Coated Stainless Steel)	50
		Coated Copper, Terrie Coated Claimess Cleery	30
e.	Aspha	alt Shingles	
	i.	15 Year	15
	ii.	20 Year	20
	iii.	25 Year	25
	iv.	30 Year	30
f.	Slate		

	i.	S-1	100
	ii.	S-2	75
	iii.	S-3	50
g.	Clay/0	Concrete Tile	50+
h.	Spray	-On Polyurethane Foam Roofing	10

\sim					_
Si	4	IV	IΡ	L	Ε.

	ectri	

a.	Electr	ic Motors	18
b.	Electr	c Transformers	
	i.	Oil Filled	30
	ii.	Dry Type	30
c.	Motor	Control Center	30
d.	Uninte	errupted Power Supply	
	i.	Battery	10
	ii.	Rotary	15
e.	Batter	ies	5
f.	Main	Service Panels	30
g.	Sub F	anels	
	i.	120/280 V	30
	ii.	277/480 V	30
h.	Circu	it Breakers	30
i.	Light	Fixtures	20
j.	Emer	gency Engine Generator Set	20
k	Groui	nd Fault Switch	30

_	_			
$\overline{}$	Λ	n /	IΡ	_
_	_	IV/	\mathbf{r}	_

F.	Fire Life Safety	, Access Control,	, Security System
----	------------------	-------------------	-------------------

a.	Fire A	larm	15
b.	Fire P	rumps	25
c.	Sprink	llers	25
d.	Secur	ity System	10
e.	Acces	s Control System	10
f.	CCTV		
	i.	Monitors	5
	ii.	Pan & Tilt Motors	5
	iii.	Cameras – Tube	2
	iv.	Cameras – Chip	6
	٧.	Computer Control	10
	vi.	Standby Power Supply – Battery	5

G. Interior Finishes

a. Fl	oori	ng	
	i.	Vinyl	
		1. Tile	12
		2. Sheet	12
	ii.	Carpet – Common Area	
		1. Broad Loom	6
		2. Carpet Tiles	6
		3. Loop Pile	7
	iii.	Ероху	15
	iv.	Ceramic Tile	20
	٧.	Stone	
		1. Granite	75-
		2. Marble	50
		3. Slate	50
	vi.	Terrazzo	50
	vii.	Wood	15
	viii.	Concrete	50
b. W	alls		
	i.	Plaster/Drywall with skim coat	30
	ii.	Vinyl Wall Covering	10
	iii.	Paint	5
	iv.	Wall Paper	4
	٧.	Epoxy (two part)	7
	vi.	Fabric	5
	vii.	Wood	15
c. C			
	i.	Plaster/Drywall with skim coat	30
	ii.	Suspended	
		 Spline System 	20
		2. Lay-In System	25
		3. Ceiling Tiles	13
	iii.	Metal	25
		Wood	30
d. D	oor	Hardware	

		SAMPLE
i.	Entry Lock sets	10
ii.	Door Closures	10
iii.	Coordinating Door Mechanism	7
iv.	Handicap Door Opener	10
٧.	Rollup Door (Commercial)	15
vi.	Rollup Door (Industrial)	20

H. Structural

a.	Stee		Life of Building
b.	Cond	rete	Life of Building
c.	Woo	d	30
d.	Faca	de	
	i.	Brick, Block and Stone	Life of Building
	ii.	Concrete – Poured in Place	Life of Building
	iii.	Metal Curtain Wall	40
	iv.	Glass Curtain Wall	30
	٧.	Precast Panels	35
	vi.	Stone Veneer	35
	vii	Windows	30

I. Parking Decks

a. Underg	round Structures	Life of Building
b. Outsid	e	
i. E	xposed	30
ii. C	Covered	40

Assigning the Service Life to an Asset

Purpose

The purpose of this procedure is to assign the expected service life to an asset which is used to predict the residual remaining lives of assets and, subsequently, the timing of asset renewals.

When to Use

Use this procedure when an asset is acquired.

Adjustments to Service Life

The remaining expected service life may be higher or lower than the calculated value based on the initial assigned service life due to the environment, maintenance or operations practices, or quality of the specific make or model. The remaining expected service life shall typically be adjusted based on a condition assessment.

If numerous condition assessments of similar equipment suggest that the assigned service life be adjusted, then the tables in this procedure shall be updated to reflect that evaluation.

Procedure

Follow these steps to assign the expected service life to an asset.

Step	Action	
1	Determine the asset type.	
	• Civil	
	Mechanical	
	Electrical	
	Instrumentation	
2	Using the tables provided in this procedure, determine the group	
	the asset belongs to.	
3	Then use the table to determine the service life of the asset.	
4	Enter this value in the appropriate field in the CMMS system.	
	Note: For assets inventoring NEW be converted by ASSET CODES NEED TO UPDATE FOR NEW depr_term field. Continued on payt page	
-	NEED TO SIEW ASSET	
NEED TO UPDATE FOR TO DES NEED TO UPDATE FOR TO DES Continued on next page 1.		

Service Life Table: Civil

Use the following table to assign service life to assets based on their asset group or type.

Asset Group	Service Life (years)
BLDG - ROOF	20
BLDG (building)	60
DOOR	35
FENCE & GATE	75
LAND	300
OCU (odor control unit)	25
PAVEMENT	15
PIPING	35
PIPING - CONCRETE GRAVITY	100
PIPING - CS - ACP	70
PIPING - CS - CIP	75
PIPING - CS - CL & C	100
PIPING - CS - DAMPER	25
PIPING - CS - DIP	110
PIPING - CS - GATE VALVE	30
PIPING - CS - HDPE	100
PIPING - CS - Permastran	50
PIPING - CS - Polyethylene	100
PIPING - CS - PVC	100
PIPING - CS - STL, CL&TW	75
PIPING - GRAVITY	75
PIPING - PRESSURE	50
PIPING - SEVERE SERVICE	15
PIPING - STRAINER	25
PIPING - TRAP	50
PIPING - VALVE	25
STORAGE BOX	50
STRUCTURE	30-75
TANK	30
TRAILER - CONTAINER	40
TRAILER - PREFAB	20

Continued on next page

Service Life Table: Electrical Use the following table to assign service life to assets based on their asset group or type.

Asset Group	Description	Service Life (years)
BAT	Batteries	15
BREAKER	Electrical - general	35
CABINET	Control Cabinet	20
CHARGER	Battery charger	20
DIST PNL	Elec Distribution Panel	35
DROP	Elec drop for power distribution center	35
FEEDER	Electrical Feeder	35
LIGHT	Light, typically emergency lighting	40
LOAD BANK	Electrical load bank	40
MCC	Motor Control Center	40
MVMC	Medium Voltage Motor Control Center	40
PDC	Power distribution center for lampbank	35
SWBD	Electrical switchboard	40
SWGR	Electrical switchgear	40
SWITCH	Electrical disconnect switches	40
THERMOCOUPLE	Thermocouple	35
UPS	Uninterruptable power source	40
XFMR	Elec Transformer - oil filled	40
XFMR1	Elec Transformer - dry	40

Service Life Table: Instrumentation Use the following table to assign service life to assets based on their asset group or type.

Asset Group	Description	Service
		Life (years)
ALARM	Alarm	20
ANALYZER	Instrument - analyzer	20
CAMERA	Cameras, video cameras, monitors	20
COMM SYSTEM	Communication system	20
CONTROL PNL	System control panel, LCP, HMI, monitor	35
INST	Instrument - general	20
INST - LVL	Instrument - level indicator	20
INST - PH	Instrument - pH meter	20
INST-FLOW	Instrument - flow measuring or indicating	20
	Instrument - pressure indicating	
INST-PIT	transmitter	20
INST-TEMP	Instrument - temperature	20
LAB EQUIP	Lab equipment	15

	Prog logic controller, central processing	
PLC/CPU	unit	20
SCADA	SCADA, control system	20
XMTR	Instrument - transmitter	20

Service Life: Civil, Structures, Nonmechanical Use the following table to assign service life to assets based on their asset group or type.

Asset Group	Description	Service Life (years)
BLDG	Building	75
LAND	Land	300
LANDSCAPING	Landscaping	75
PAVEMENT	Asphalt, concrete pavement	20
PROCESS	PROCESS - general treatment process	75
PROGRAM	PROGRAM - based on budget	75
PS	Pump station	75
PV	Pressure Vessel or air receiver	35
ROOF	Roof	75
STORAGE BOX	Storage box or container	50
STRUCTURE	Structure, typically large, made of concrete	75
SUB-PROCESS	SUB-PROCESS	75
SUBSTATIONS	Power substation	75
SUMP	Sump, drainage pit	75
SYSTEM	SYSTEM - functional group of assets	75
TANK	Storage tank - FRP, HDPE, steel, etc.	50
TRAILER	Trailer, container	75

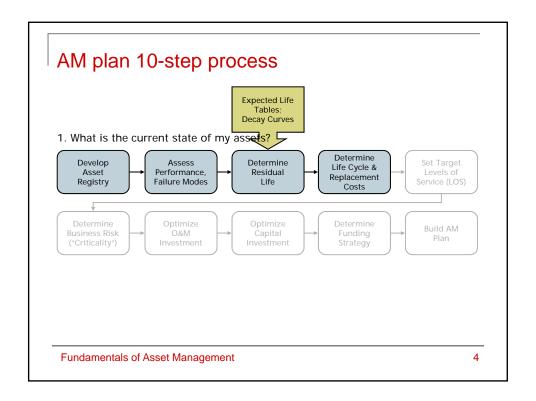
Service Life Table: Mechanical Use the following table to assign service life to assets based on their asset group or type.

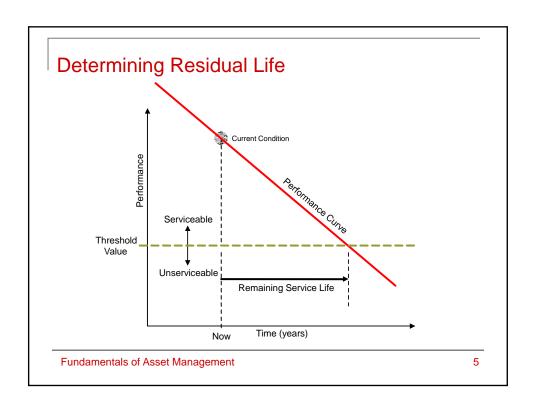
Asset Group	Service Life (years)
AIR DRYER	25
AIRPORT	30
APPLIANCE	15
BARSCREEN	25
BIOFILTER	35
BLOWER	25
BOILER	27
BRG (bridge)	30
BURNER	15
CFG (Centrifuge)	13
CLASSIFIER	20
CLUTCH	30
COLLECTOR	40
COMPRESSOR	30

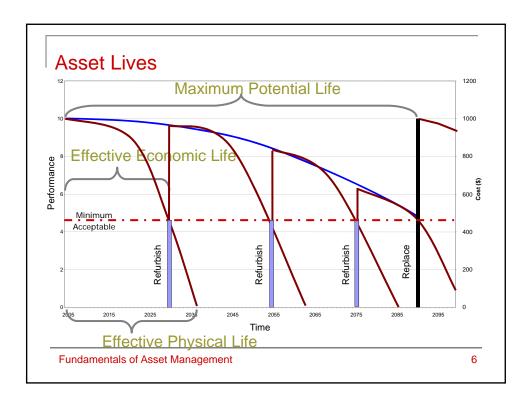
13-Administration	84
CONDENSER	35
CONVEYOR	20
CRANE	40
CYCLONE	25
DEAERATOR	35
DEIONIZER	35
DIVERTER	25
DRIVE	25
DROP (electrical drop)	35
ELEV (elevator)	35
EYEWASH	35
FAN	30
FIRE SUPPRESS	50
FLT (filter)	15
FURNACE	40
GEAR	35
GRINDER	25
GUIDE VANES	25
H2O SOFTENER (water softener)	35
HEATER	20
HOPPER	25
HRSG	25
HR-SYS (heat recovery system)	25
HYD UNIT (hydraulic unit)	25
INJECTOR	15
LAB EQUIP	15

Continued on next page

Assigning the Service Life to an Asset, Continued




Service Life Table: Mechanical (continued)


Asset Group	Service Life (years)
MIXER	25
MIXER - STATIC	40
MOTOR	30
MOV (motor operated valve)	25
Pump - Chemical	10
Pump - Diaphragm	10
Pump - Hydraulic	20
Pump - Lobe / Gear	15
Pump - Metering	12
Pump - Portable with trailer	15
Pump - Progressive Cavity	20
Pump - Sump, 5 HP or Less	20
Pump - Sump, greater than 5HP	25
Pump - Vertical Turbine	25
Pump, centr 60 MGD and above	40
Pump, centr Recessed Impeller type (WEMCO)	30
Pump, centr Small circulating close coupled units	15
PV (pressure vessel)	25
RAL	25
REGULATOR (pressure regulator)	30
SCALE	25
SCRUBBER	25
SEPARATOR	35
SHOP EQUIP	15-35
SILENCER	30
TURBINE	30
VEHICLE, CART	15
VEHICLE, CCTV Truck	15
VEHICLE, Pool Vehicle	15
VEHICLE, Rodding Truck	15
VEHICLE, Vactor Truck	15

Revision Date

09/03/2014 DRAFT

"Physical life" vs. "economic life"

Effective Economic life is

- The period from the acquisition of the asset to the time when the asset, while physically able to provide a service, ceases to be the lowest cost alternative to satisfy a particular service requirement.
- At a maximum, equal to the physical life, but obsolescence often will ensure that the economic life is less than the physical life.

Fundamentals of Asset Management

7

A-1 Condition Assessment

Condition Rating	Description	Maintenance Level	Description
1	New or Excellent Condition	Normal PM	
2 3	Minor Defects Only	Normal PM, Minor CM	
4	Moderate Deterioration	Normal PM, Major CM	
6	Moderate Deterioration	,	
7 8	Significant Deterioration	Major repair, rehabilitate	
9 10	Virtually Unserviceable Unserviceable	Rehab unlikely Replace	

A-2 Performance

Performance Rating	Description
1	Exceeds / Meets all Performance Targets
	Minor Performance Deficiencies
3	Considerable Performance Deficiencies
	Major Performance Deficiencies
5	Does not meet any Performance Targets

A-3 Reliability

Reliability Rating	Description	Failure Timing
1	As Specified by Manufacturer	Never
2	Random Breakdown	Every 20 Years
3	Occasional Breakdown	Every 5 Years
4	Periodic Breakdown	Every 2 Years
5	Continuous Breakdown	= 1 year

B-1 Effective Lives (Years)

Class	Asset Type	Exp Life
1	Civil	75
2	Pressure Pipework	60
3	Sewers	100
4	Pumps	40
5	Valves	30
6	Motors	35
7	Electrical	35
8	Controls	25
9	Building Assets	60
10	Land	300

2 Conditon - Residual Life Factors	Condition/Residual Life									
Effective Lives	1	2	3	4	5	6	7	8	9	10
Civil	0.9	8.0	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Pressure Pipework	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Sewers	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Pumps	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Valves	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Motors	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Electrical	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Controls	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Building Assets	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Land	1	1	1	1	1	1	1	1	1	1

B-3 Condition Based Effective Lives	Condition/Residual Life									
Effective Lives	1	2	3	4	5	6	7	8	9	10
Civil	67.5	60	52.5	45	37.5	30	22.5	15	7.5	0
Pressure Pipework	54	48	42	36	30	24	18	12	6	0
Sewers	90	80	70	60	50	40	30	20	10	0
Pumps	36	32	28	24	20	16	12	8	4	0
Valves	27	24	21	18	15	12	9	6	3	0
Motors	31.5	28	24.5	21	17.5	14	10.5	7	3.5	0
Electrical	31.5	28	24.5	21	17.5	14	10.5	7	3.5	0
Controls	22.5	20	17.5	15	12.5	10	7.5	5	2.5	0
Building Assets	54	48	42	36	30	24	18	12	6 2	
Land	300	300	300	300	300	300	300	300	300	300

C-1 Consequence of Failure

CoF Rating	Description	% Affected	Level
1	Minor Component Failure	0-25%	Asset
2	Major Component Failure	25-50%	Asset
3	Major Asset	0-25%	Asset
4	Multiple Asset Failure	25-50%	Facility / Sub-System
5	Major Facilty Failure	50-100%	Facility
6	Minor Sanitory System Failure	20-40%	Total System
7	Medium	40-60%	Total System
8	Intermediate	60-80%	Total System
9	Significant	80-90%	Total System
10	Total	90-100%	Total System

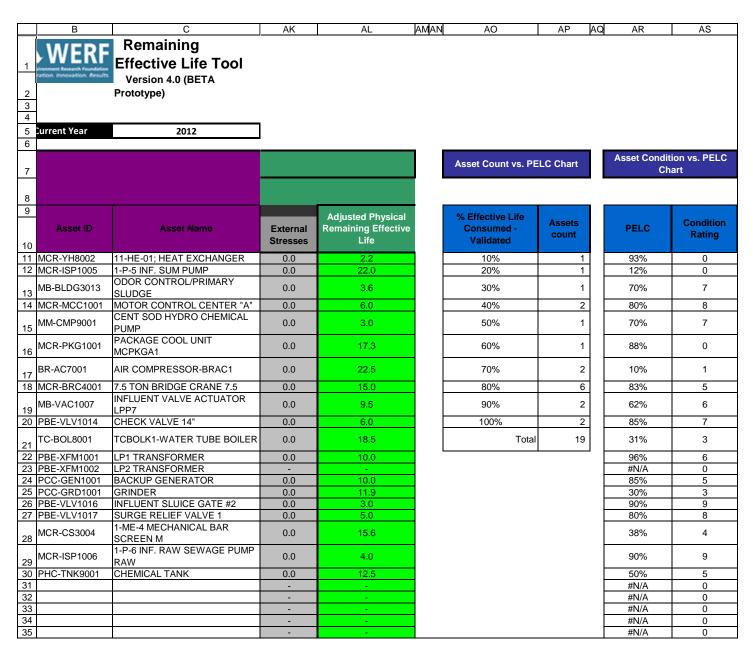
D-1 Probability of Failure

% of Effective Life Consumed	PoF Rating
0%	1
10%	2
20%	3
30%	4
40%	5
50%	6
60%	7
70%	8
80%	9
90%	10

D-2 Don't Forget Redundancy!

Level of Redundancy	Reduce PoF by:
50% Backup	50%
100% Backup	90%
200% Secondary Backup	98%

E-1 Renewal Strategies


Option	Description	Type
1	Do nothing	Non-Capital
2	Continue with Status Quo	Non-Capital
3	Maintain differently	Non-Capital
4	Operate differently	Non-Capital
5	Repair	Capital
6	Refurbish/rehabilitate	Capital
7	Replace asset with similar	Capital
8	Replace with improved asset	Capital
9	Reduce Levels of Service	Non-Asset

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	
1 2 3	Water Er	WERF	Remaining Effective Life Tool Version 4.0 (BETA Prototype)	-	_		, -	,		,	,	=			
5		Current Year	2012	I											
7				STEP 1: Load Base Data							STEP 2: Determine Modification Factors				
9	No.	Asset ID	Asset Name	Asset Class	Install Year	Refurb Year	Current Age (years)	Condition Rating	Estimated Design Service Life (years)	Design Standard	Construction Quality	Modificat Material Quality	Operational History	Operating Environment	
11		MCR-YH8002	11-HE-01; HEAT EXCHANGER	Heat exchanger - air	1999		13		15	5%	5%				
12	2	MCR-ISP1005	1-P-5 INF. SUM PUMP	Pump - Sump, greater than 5HP	2002	2009	3		25						
13	3	MB-BLDG3013	ODOR CONTROL/PRIMARY SLUDGE	Odor Control unit	2000		12	7	12						
14	4	MCR-MCC1001	MOTOR CONTROL CENTER "A"	Motor Control Center	1991		21	8	30						
15	5	MM-CMP9001	CENT SOD HYDRO CHEMICAL PUMP	Pump - Chemical	2007		5	7	10						
16	6	MCR-PKG1001	PACKAGE COOL UNIT MCPKGA1	Air Handling Unit - Small wall mounted	2004		8		25	2%					
17	7	BR-AC7001	AIR COMPRESSOR-BRAC1	Compressor - Reciprocating , Large Capacity	1992		20	1	25						
18	8	MCR-BRC4001	7.5 TON BRIDGE CRANE 7.5	Crane	1996		16	5	30						
19	9	MB-VAC1007	INFLUENT VALVE ACTUATOR LPP7	Actuator - Valve	2005		7	6	25	-3%				-2%	
20	10	PBE-VLV1014	CHECK VALVE 14"	Valves - 4" and larger	2001		11	7	20						
21	11	TC-BOL8001	TCBOLK1-WATER TUBE BOILER	Boiler - Hot water	1989		23	3	27		3%		-5%		
22	12	PBE-XFM1001	LP1 TRANSFORMER	Transformers	1990		22	6	25						
23	13	PBE-XFM1002	LP2 TRANSFORMER	Transformers			-		25						
24		PCC-GEN1001	BACKUP GENERATOR	Generator - Emergency Portable	1997		15	5	20						
25		PCC-GRD1001 PBE-VLV1016	GRINDER INFLUENT SLUICE GATE #2	Grinder - Digested Sludge	2005		7	3	17						
26 27	16 17	PBE-VLV1016 PBE-VLV1017	SURGE RELIEF VALVE 1	Gate - Sluice Valves - 4" and smaller	1995 1996		17 16	9	30 25		1				
28	18	MCR-CS3004	1-ME-4 MECHANICAL BAR SCREEN M	Barscreen - Bar and Rack	1994		18	4	25			7%		-3%	
29	19	MCR-ISP1006	1-P-6 INF. RAW SEWAGE PUMP RAW	Pump, centr 60 MGD and above (Raw Sewage)	1987		25	9	40						
30	20	PHC-TNK9001	CHEMICAL TANK	Tank - Chemical	1999	1	13	5	25						
31	21				1		-	-	-						
32	22						-		-						
33	23						-		-						
34	24						-		-						
35	25	I					-		-						

0 Р Q R S V W Remaining Effective Life Tool Version 4.0 (BETA Prototype) **Current Year** 2012 STEP 3: Determine End of Asset Life **STEP 4: Determine Remaining Effective** 7 STEP 5: Validate and I Life Level of Service Financial Efficiency Physical Mortality 8 9 Remaining % Effective Life Time to Time to Level of Time to Override Remaining **Imminent Failure** Time to Physica **Asset Name Efficiency** Remaining Life Effective Life -Asset ID External Capacity Failure Service Failure Effective Consumed Failure (years) mode Failure (years) Life (years) (PELC) (years) Validated (years) **Stresses** (years) (years) 11 MCR-YH8002 11-HE-01; HEAT EXCHANGER 93% 1.0 5 2.2 Financial Efficiency 1.0 12 MCR-ISP1005 1-P-5 INF. SUM PUMP 22.0 Physical Mortality 22.0 12% 22.0 ODOR CONTROL/PRIMARY MB-BLDG3013 3.6 3.6 70% 3.6 Physical Mortality SLUDGE 14 MCR-MCC1001 MOTOR CONTROL CENTER "A" 6.0 Physical Mortality 6.0 80% 6.0 CENT SOD HYDRO CHEMICAL MM-CMP9001 3.0 **Physical Mortality** 3.0 70% 3.0 **PUMP** PACKAGE COOL UNIT MCR-PKG1001 7 17.3 Financial Efficiency 7.0 72% 3 3.0 MCPKGA1 BR-AC7001 AIR COMPRESSOR-BRAC1 22.5 Physical Mortality 22.5 10% 22.5 18 MCR-BRC4001 7.5 TON BRIDGE CRANE 7.5 5 15.0 Capacity 5.0 83% 5.0 INFLUENT VALVE ACTUATOR MB-VAC1007 9.5 **Physical Mortality** 9.5 62% 9.5 LPP7 20 PBE-VLV1014 CHECK VALVE 14" 6.0 Physical Mortality 6.0 70% 3 3.0 18.5 ΓC-BOL8001 TCBOLK1-WATER TUBE BOILER 18.5 **Physical Mortality** 31% 18.5 PBE-XFM1001 LP1 TRANSFORMER 1 10.0 Capacity 1.0 96% 1.0 23 PBE-XFM1002 LP2 TRANSFORMER 24 PCC-GEN1001 BACKUP GENERATOR 3 10.0 Financial Efficiency 3.0 85% 3.0 25 PCC-GRD1001 **GRINDER** 11.9 Physical Mortality 11.9 30% 11.9 26 PBE-VLV1016 INFLUENT SLUICE GATE #2 3.0 Physical Mortality 3.0 90% 3.0 27 PBE-VLV1017 SURGE RELIEF VALVE 1 5.0 Physical Mortality 5.0 80% 5.0 1-ME-4 MECHANICAL BAR MCR-CS3004 15.6 Physical Mortality 15.6 38% 15.6 SCREEN M 28 1-P-6 INF. RAW SEWAGE PUMP MCR-ISP1006 4.0 **Physical Mortality** 4.0 90% 4.0 30 PHC-TNK9001 CHEMICAL TANK 12.5 Physical Mortality 12.5 50% 12.5 31 32 33

34

В Z AA AB AC AD ΑE AF AG AΗ ΑI AJ Remaining Effective Life Tool Version 4.0 (BETA Prototype) 3 **Current Year** 2012 PHYSICAL LIFE CALCULATOR 7 Record 8 9 **Physical Remaining Life Modification Factors** % Effective Life **Condition Based** Age Based Consumed (PELC) Asset ID **Asset Name** Physical Design Construction Operational Operating Remaining Effective Remaining Effective **Material Quality** Validated Quality **Environment** Remaining Life Standard History Life (CBREL) Life (ABREL) 11 MCR-YH8002 11-HE-01; HEAT EXCHANGER 93% 0.1 0.1 0.0 0.0 0.0 12 MCR-ISP1005 1-P-5 INF. SUM PUMP 12% 22.0 0.0 0.0 0.0 0.0 0.0 ODOR CONTROL/PRIMARY MB-BLDG3013 70% 0.0 0.0 0.0 0.0 3.6 3.6 0.0 0.0 SLUDGE 14 MCR-MCC1001 MOTOR CONTROL CENTER "A" 80% 6.0 9.0 6.0 0.0 0.0 0.0 0.0 0.0 CENT SOD HYDRO CHEMICAL 70% MM-CMP9001 3.0 5.0 3.0 0.0 0.0 0.0 0.0 0.0 **PUMP** PACKAGE COOL UNIT MCR-PKG1001 88% 17.0 17.0 0.3 0.0 0.0 0.0 0.0 MCPKGA1 16 BR-AC7001 AIR COMPRESSOR-BRAC1 10% 22.5 5.0 22.5 0.0 0.0 0.0 0.0 0.0 18 MCR-BRC4001 7.5 TON BRIDGE CRANE 7.5 83% 15.0 14.0 15.0 0.0 0.0 0.0 0.0 0.0 INFLUENT VALVE ACTUATOR MB-VAC1007 62% 10.0 18.0 10.0 -0.3 0.0 0.0 0.0 -0.2 LPP7 20 PBE-VLV1014 CHECK VALVE 14" 85% 6.0 9.0 6.0 0.0 0.0 0.0 0.0 0.0 TC-BOL8001 TCBOLK1-WATER TUBE BOILER 31% 18.9 4.0 18.9 0.0 0.6 0.0 -0.9 0.0 22 PBE-XFM1001 LP1 TRANSFORMER 96% 10.0 3.0 10.0 0.0 0.0 0.0 0.0 0.0 23 PBE-XFM1002 LP2 TRANSFORMER 24 PCC-GEN1001 BACKUP GENERATOR 85% 10.0 5.0 10.0 0.0 0.0 0.0 0.0 0.0 25 PCC-GRD1001 GRINDER 30% 11.9 10.0 11.9 0.0 0.0 0.0 0.0 0.0 26 PBE-VLV1016 INFLUENT SLUICE GATE #2 90% 3.0 13.0 3.0 0.0 0.0 0.0 0.0 0.0 27 PBE-VLV1017 SURGE RELIEF VALVE 1 80% 9.0 5.0 0.0 0.0 0.0 0.0 0.0 1-ME-4 MECHANICAL BAR MCR-CS3004 38% 15.0 7.0 15.0 0.0 0.0 -0.5 0.0 1.1 28 SCREEN M 1-P-6 INF. RAW SEWAGE PUMP MCR-ISP1006 15.0 4.0 0.0 90% 4.0 0.0 0.0 0.0 0.0 30 PHC-TNK9001 CHEMICAL TANK 50% 12.5 12.0 12.5 0.0 0.0 0.0 0.0 0.0 31 32 33

