

2010 - State Toxicity Plan discussion starts

(will replace SIP Section 4)

2014

March 2014 – EPA issued "Alternative Test Procedure:"

2-concentration TST

July 2014 – **EPA Region 9 objection letter to two LACSD permits**

Nov 2014 - LA Regional Water Board imposed numeric toxicity limits for LACSD: Whittier Narrows & Pomona Plants

- MMEL & MDEL numeric chronic toxicity limits
- · 2-concentration TST evaluation recommended
- · No safe harbor during investigation

Dec 2014 – LACSD, CASA, BACWA, & SCAP petitioned State Water Resources Control Board

Jan 2015 – EPA Region 9 submitted objection to Las Gallinas Valley Sewage Treatment Plant

• MMEL & MDEL numeric chronic toxicity limits

2015

Feb 2015 – EPA withdraws "Alternative Test Procedure:"
• 2-concentration TST

May 2015 – LACSD appealed 7 permits* to SWRCB – but put it in abeyance, pending cooperative solutions.

* SJC, WN, Valencia, Saugus, Pomona, Long Beach, Los Coyotes.

May 2015 – SCAP, CASA & NACWA appeal SJ Creek permit

- CASA also challenged EPA objection to narrative objectives & triggers with District Court
- ·Comment letter submitted by SCAP

Jun 2015 – State Water Board memo: plan to re-file for the ATP

6 North Coast permits & SF Bay MS4 permit now mandate the TST

SWRCB Exec Director's Report – December 2015										
Toxicity Amendments to SIP	Summer 2012	Feb 2016	June 2016							
Toxicity Amendments to "Inland Surface Waters, Enclosed Bays and Estuaries Plan" (SIP)	Draft received public comments	New Draft for release to public	Target Board Meeting Date							

Toxicity Plan

One take-away Two themes

Possible Draft Toxicity Plan in Spring 2016

- 1. EPA requires numeric MDEL & AMEL limits If RP is present
- 2. Some regulators love the TST

EPA Argument for numeric limits:

- 40 CFR 122.44(d)(1)(v): When a discharge causes, or has RP to cause an <u>in-stream excursion</u> above a narrative criterion, ... the permit must <u>contain effluent limits*</u> for WET. [Except as noted in (d)(1)(ii)]
- 40 CFR 122.44(d)(1)(ii) ... permitting authority shall use procedures which account for ... variability of pollutant or parameter in effluent, [and] sensitivity of species to toxicity testing ...

ceriodaphnia studies suggest MDL of 2 to 3 TUc

Developing a Method Detection Limit for Chronic Whole Effluent Toxicity Testing

DEVELOPING A METHOD DETECTION LIMIT FOR CHRONIC WHOLE EFFLUENT TOXICITY TESTING USING CERIODAPHNIA DUBLA

Timothy F. Moore Risk Sciences 1417 Plymouth Dr., Brentwood, TN 37027

Steven P. Canton
Chadwick Ecological Consultants, Inc.
5575 S. Sycamore St., Suite 101, Littleton, CO 80120

and

Max Grimes
Regulatory Management Inc.
6190 Lehman Dr., Suite 106, Colorado Springs, CO 80918

Abstract - Chemical testing routinely uses 'blanks' to provide quality assurance. However, whole effluent toxicity (WET) testing relies, primarily, on the use of reference toxicants. As such, the intrinsic variability surrounding WET testing in the absence of toxicants is not well known. For this study, a number of municipal wastewater dischargers contracted 17 laboratories to conduct a total of 25 chronic WET tests using the standard test organism. Ceriodaphnia dubia. Unbeknownst to the labs, the samples they received from the wastewater dischargers were comprised only of "moderately hard water" made using U.S. EPA's standard formula. As such, these tests served as 'method blanks'. Of the 25 tests completed by the biomonitoring laboratories, 2 did not meet control performance criteria. Of the remaining 23 valid tests, 9 (39%) indicated toxicity in the test sample (i.e., NOEC or IC25 < 100% 'effluent'). This failure rate was unexpected, considering the water being testing was identical among labs and comprised simply of mod-hard water. Using techniques similar to those employed for traditional chemistry. reproducible 'method detection limits' (MDLs) were calculated for the chronic Ceriodaphnia test. This calculation indicates that based on a standard 0.5 dilution series starting with 100% 'effluent,' at least 3 TUc would be necessary to ensure that any reported toxicity was greater than the variability associated with this method.

KEYWORDS: Ceriodaphnia dubia, whole effluent toxicity tests, MDL, NOEC, IC25

22 yearswers, no chies.

276 tests X \$3000 = <u>\$828,000</u>

Chronic Toxicity Sum	mary
22 Years	

		rears		
9 Year	#Results	# Results	#Results	
, real	Reported	>1 but <2 TUc	>2 TUc	
1994	12	0	0	
1995	11	0	0	
1996	13	1	1	To.
1997	12	2	0	To
1998	12*	3	0	Tox
1999	14	0	2	To .
2000	12	0	0	
2001	12	0	0	
2002	12	0	0	
2003	12	0	0	
2004	12	0	1	
2005	12	0	1	
2006	11	0	0	
2007	13	0	1	
2008	12	0	0	
2009	14*	1	2	Tox
2010	19*	3	2	<i>T</i> 7
2011	14	2	1	Tox
2012	13	1	To.	
2013	14	14 4 3		
2014	12	1	0	
2015	13	3	0	Tox
* Some tes	t tests in 1998 ar	nd 2009/10 were duplic	ate test events	

Some test tests in 1998 and 2009/10 were duplicate test events

How many were toxic??

Tox Tox Tox

t Tox t Tox Tox Tox t Tox

Tox Tox

Tox

Tox Tox T T T T Tox Tox x Tox

TTTT

Chronic Test Results - 2013 (% Effluent)									
TEST	SURV	/IVAL	REPF	RODUC	TION				
START DATE	NOEC	LOEC	NOEC	LOEC	IC ₂₅	TUc	TST		
1/9/13	100	>100	25	50	58.1	1.7	Fail		
2/4/13	100	>100	100	>100	>100	<1	Pass		
3/4/13	100	>100	6.25	12.5	9.88	10.1	Fail		
4/2/13	100	>100	100	>100	>100	<1	Pass		
4/12/13	100	>100	100	>100	84.5	1.2	Fail		
5/6/13	100	>100	50	100	42.7	2.3	Fail		
6/10/13	100	>100	100	>100	>100	<1	Pass		
7/12/13	100	>100	100	>100	>100	<1	Pass		
8/1/13	100	>100	50	100	90.7	1.1	Fail		
8/5/13	100	>100	100	>100	>100	<1	Pass		
9/12/13	100	>100	25	50	34.6	2.9	Fail		
10/4/13	100	>100	100	>100	>100	<1	Pass		
11/19/13	100	>100	50	100	86.1	1.2	Fail		
12/9/13	100	>100	100	>100	>100	<1	Pass		

← 2013 Very Bad Year

2014 Good Year

Chronic Test Results - 2014 (% Effluent)

REPRODUCTION

	4/
	5/
	6/
	7/

START DATE	NOEC	LOEC	NOEC	LOEC	IC ₂₅	TUc	тѕт
1/10/14	100	>100	100	>100	>100	<1	Pass
2/3/14	100	>100	100	>100	>100	1.6	Fail
3/3/14	100	>100	100	>100	>100	<1	Pass
4/8/14	100	>100	100	>100	>100	<1	Pass
5/5/14	100	>100	100	>100	>100	<1	Pass
6/9/14	100	>100	100	>100	>100	<1	Pass
7/14/14	100	>100	100	>100	>100	<1	Pass
8/11/14	100	>100	100	>100	>100	<1	Pass
9/12/14	100	>100	100	>100	>100	<1	Pass
10/3/14	100	>100	100	>100	>100	<1	Pass
11/3/14	100	>100	100	>100	>100	<1	Pass
12/8/14	100	>100	100	>100	>100	<1	Pass

SURVIVAL

What changed?

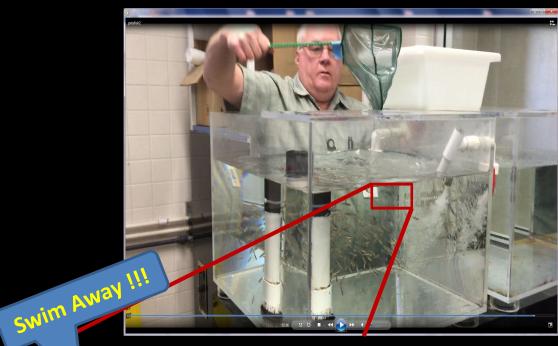
2015 - So-So Year

Chronic Test Results - 2015 (% Effluent)									
TEST	SUR	/IVAL	REPR	ODUC.	TION				
START DATE	NOEC	LOEC	NOEC	LOEC	IC ₂₅	TUc	тѕт		
1/9/15	100	>100	100	>100	>100	<1	Pass		
2/6/15	100	>100	100	>100	>100	<1	Pass		
3/6/15	100	>100	100	>100	59.3	1.7	Fail		
4/10/15	100 >100		100 >100 >100		>100	<1	Pass		
5/8/15	100	>100	100	>100	59.9	1.7	Fail		
6/5/15	100	>100	100	>100	>100	<1	Pass		
6/13/15	100	>100	100	>100	>100	<1	Pass		
7/13/15	100	>100	50	100	95.3	1.05	Fail		
8/7/15	100	>100	100	>100	>100	<1	Pass		
9/15/15	100	>100	100	>100	>100	<1	Pass		
10/2/15	100	>100	100	>100	>100	<1	Pass		
11/2/15	100	>100	100	>100	>100	<1	Pass		
12/11/15	100	>100	100	>100	>100	<1	Pass		

TST does not show magnitude - another clue is lost

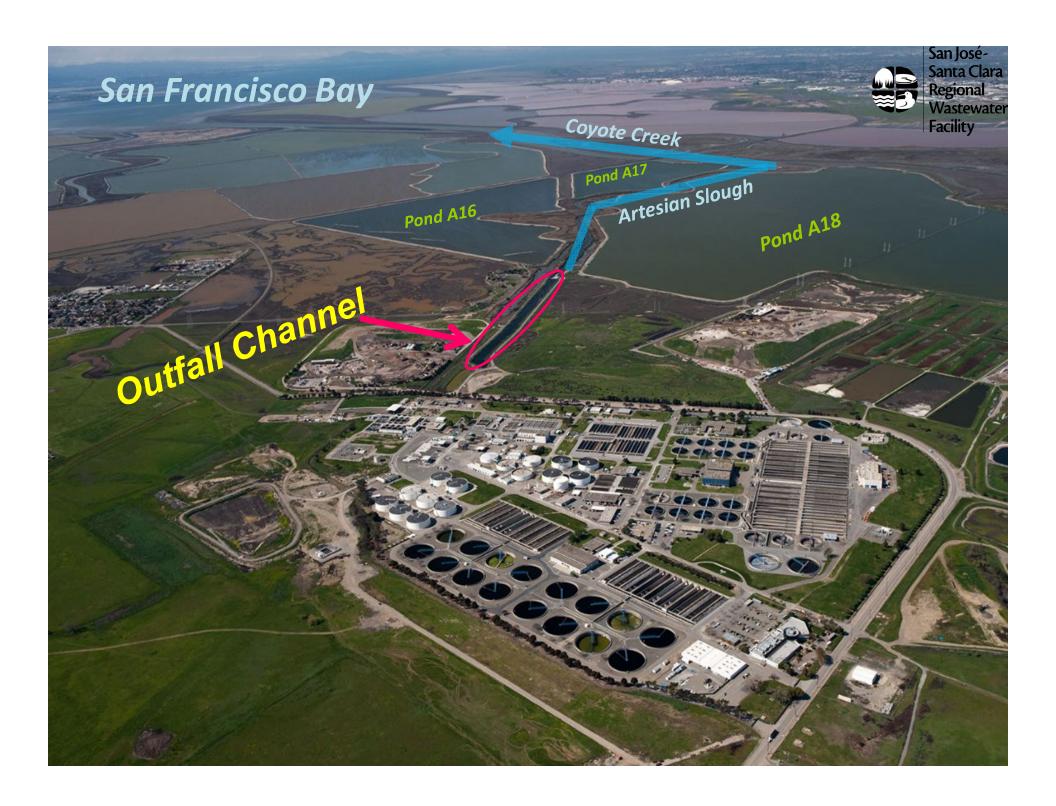
What problem we are trying to solve?

Toxicity testing is a good diagnostic tool*


<u>BUT just one line of evidence</u>

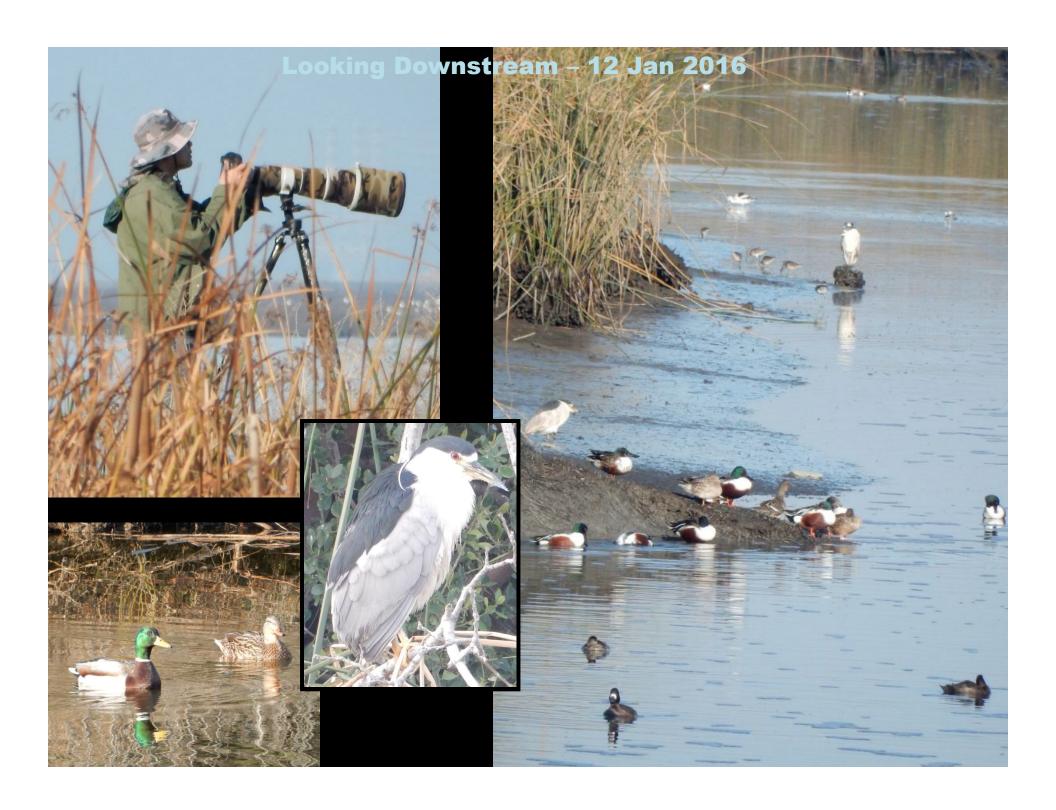
* TST endpoint renders the tool practically useless.

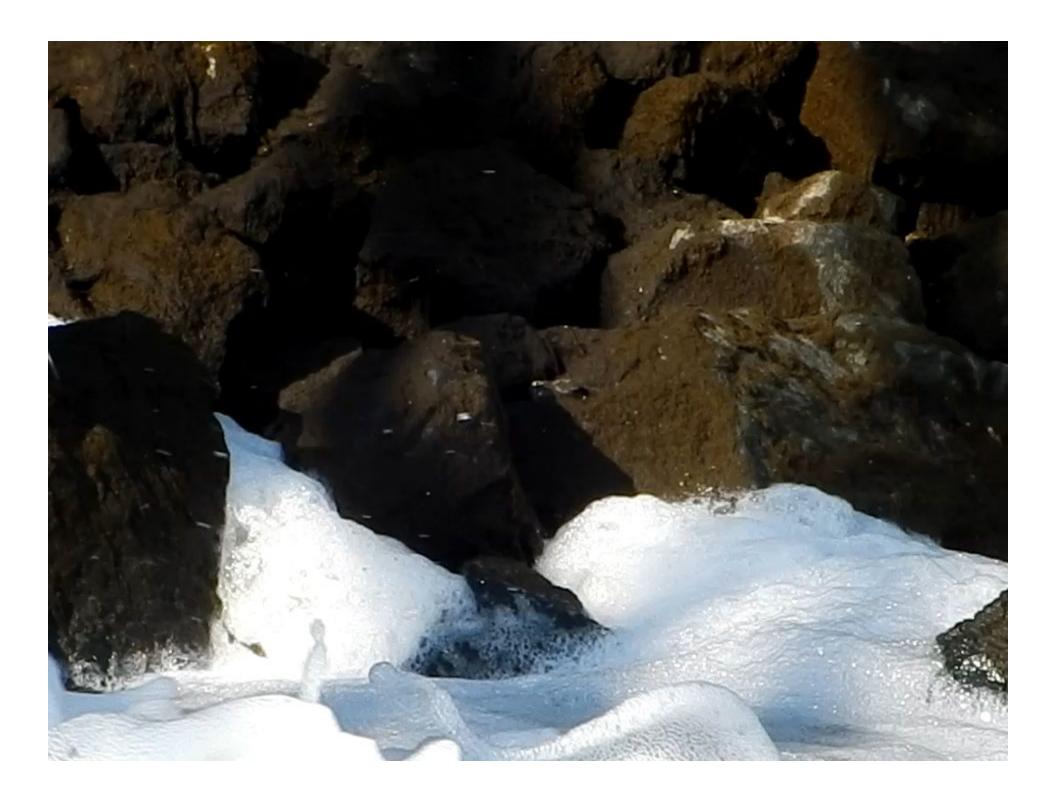
Acute Toxicity Test – Rainbow Trout – Never failed a test in 27 Years!


ENDING	EFFLUENT	CONTROL
DATE	SURVIVAL	SURVIVAL
01/26/13	100	100
02/28/13	100	100
03/22/13	100	100
04/19/13	100	100
05/17/13	100	100
06/28/13	100	100
07/26/13	100	100
08/23/13	100	100
09/22/13	97.8	100
10/19/13	100	97.8
11/16/13	100	100
12/13/13	100	97.8
01/17/14	100	100
02/14/14	100	100
03/21/14	100	100
04/25/14	100	100
05/23/14	100	100
06/27/14	100	100
07/25/14	100	100
08/29/14	100	100
09/26/14	100	100
10/24/14	100	100
11/21/14	100	93.3
01/31/15	100	100
04/24/15	100	100
07/24/15	100	100
10/23/15	100	100

4050 trout sacrificed to toxicity gods!

Outfall Weir





Line of Evidence #5 – Lots of Fish

Beach Seines

Line of Evidence #6 – Spawning fish

Fish Spawning

Other lines of evidence

Chronic Toxicity Test = Toxic

#2 – Acute Toxicity Test	No
#3 – Outfall Channel ecosystem	Nope
#4 – River Monsters in the Outfall	Nada
#5 – Lots of fish	Zero
#6 – Spawning fish	Zilch

Conclusion

Chronic toxicity test in absence of an MDL is a poor indicator of toxicity.

Removing concentration response & Quality Assurance from the chronic test does not make it a better test.

	24 hits - 17 year							lears				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	ears Dec
1996					1.07 28.7 %							17.6 23.9%
1997	1.3 32 %	1.2 Pass						8				
1998	1.4 16.2%	1.3 Pass	1.03 26.0 %		1.3 Pass	16	15		8			
1999	2.0 Pass				Le		^(Le			10.4 92.1%	
2000				15								
2001			20		1							
2002		311										
2003				0,								
2004		1		0 24.0%							3.4 34.9 %	
2005									5.9 34.5%			
2006												
2007					2.4 32.8%							
2008												
2009							33.5 67.7%	1.82 36/25 %				<3.39
2010		6.9 / 7.5		<1.27 24%					10.4 84.8%			
2011					5.5 51.8%	1.4 34.6%						
2012	1.6 61.7%									4.1 24.5%		