Bay Area Clean Water Agencies
Preparing for Your Next NPDES Permit Renewal
September 24, 2010



# Calculating Ammonia Effluent Limits for Bay Dischargers

Andy Eggleston, Oakley Water / RMC

## **Ammonia Limits:** *Development Process*

- 1. Water Quality Objectives
- 2. Total vs. Un-ionized Ammonia
- 3. Reasonable Potential Analysis
- 4. Calculating Effluent Limits

### Ammonia Limits: Development Process

### 1. Water Quality Objectives

- 2. Total vs. Un-ionized Ammonia
- 3. Reasonable Potential Analysis
- 4. Calculating Effluent Limits

#### Basin Plan §3.3.20



#### **Older Permits**



**Recent Permits** 

- Increased interest in regulating ammonia
- Implementation of ammonia WQOs for Bay discharger effluent limits was directed by State Water Board.
  - Included in Remand Order for EBMUD Wet Weather Facilities
  - Prepared on State Water Board's own initiative.

**Recent Permits** 

- Permit renewals now include:
  - Reasonable Potential Analysis (RPA) for ammonia
  - Effluent limits for total ammonia (if triggered)

| Fxan | nple:                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effluent L                                                                                                                                                                                                       | imitations (1,2)<br>MDEL                                                                                                                                                                                                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Parameter         Copper         Cyanide         Dioxin-TEQ (3)         Chlorodibromomethane         Dis(2 conylinet) behthalate         Total Ammonia         Footnotes for Table 7:         (daily = 24-hour period; n         b. All metals limitations as         (3) A daily maximum or avec         limitations only if it exceec         Provisions (Attachment G) | Units<br>$\mu g/L$<br>$\mu g/L$<br>$\mu g/L$<br>$\mu g/L$<br>$\mu g/L$<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L<br>g/L | AMEL<br>33<br>20<br>1.4 x 10 <sup>-8</sup><br>340<br>59<br>150<br>average concentration of all sa<br>onth).<br>or a given constituent shall be<br>on and the Reporting Level for<br>evels (MLs) for compliance d | 46         54         4.4 x 10 <sup>-8</sup> 680         120         490         amples collected during the averaging period         considered noncompliant with the effluent or that constituent. The Regional Standard letermination purposes. An ML is the |

### **Ammonia Limits:** *Development Process*

- 1. Water Quality Objectives
- 2. Total vs. Un-ionized Ammonia
- 3. Reasonable Potential Analysis
- 4. Calculating Effluent Limits



### **Total vs. Un-ionized**



Concentration of ammonia species as a function of pH



### **Calculating Fraction NH<sub>3</sub>**

**Marine and estuarine** 

Un - ionized fraction = 
$$\frac{1}{1+10^{(pK-pH)}}$$

Where:

$$pK = 9.245 + 0.116 * (I) + 0.0324 * (298 - T) + \frac{0.0415 * P}{T}$$

$$I = \frac{19.9273 * (S)}{1000 - 1.005109 * (S)}$$

S = receiving water salinity (ppt)

T = receiving water temperature (Kelvin)

P = receiving water pressure (one atmosphere)

### **Calculating Fraction NH<sub>3</sub>**

**Marine and estuarine** 



### **Calculating Fraction NH<sub>3</sub>**

**Freshwater** 



Summary

1. Receiving water: pH, salinity, and temperature data

2. Calculate fraction NH<sub>3</sub> for each sample

3. Determine median and 90<sup>th</sup> percentile of fractions NH<sub>3</sub>



#### An Example – Step 1



|   | Date     | RMP<br>Station | Salinity<br>(ppt) | Temperature<br>(K) | рН  |
|---|----------|----------------|-------------------|--------------------|-----|
|   | 01/27/97 | BD20           | 0.4               | 283.5              | 7.6 |
|   | 04/21/97 | BD20           | 22.9              | 288.9              | 7.7 |
|   | 08/04/97 | BD20           | 22.2              | 293.1              | 7.7 |
|   | 02/02/98 | BD20           | 4.2               | 284.3              | 7.6 |
|   | 04/14/98 | BD20           | 3.7               | 287.1              | 8.3 |
|   | 07/27/98 | BD20           | 14.5              | 294.2              | 8.0 |
| ≺ | 02/08/99 | BD20           | 6.9               | 283.4              | 7.6 |
|   | 04/19/99 | BD20           | 12.2              | 288.8              | 7.9 |
|   | 07/19/99 | BD20           | 20.7              | 291.9              | 7.9 |
|   | 02/07/00 | BD20           | 10.5              | 284.9              | 7.8 |
|   | 07/17/00 | BD20           | 22.4              | 292.2              | 7.9 |
|   | 02/12/01 | BD20           | 19.0              | 282.5              | 8.0 |
|   | 08/06/01 | BD20           | 25.2              | 293.6              | 8.0 |

#### An Example – Step 2

Calculate Fraction NH3

| Date     | RMP<br>Station | Salinity<br>(ppt) | Temperature<br>(K) | рН  | Fraction<br>Un-ionized |
|----------|----------------|-------------------|--------------------|-----|------------------------|
| 01/27/97 | BD20           | 0.4               | 283.5              | 7.6 | 0.022                  |
| 04/21/97 | BD20           | 22.9              | 288.9              | 7.7 | 0.012                  |
| 08/04/97 | BD20           | 22.2              | 293.1              | 7.7 | 0.023                  |
| 02/02/98 | BD20           | 4.2               | 284.3              | 7.6 | 0.030                  |
| 04/14/98 | BD20           | 3.7               | 287.1              | 8.3 | 0.010                  |
| 07/27/98 | BD20           | 14.5              | 294.2              | 8.0 | 0.015                  |
| 02/08/99 | BD20           | 6.9               | 283.4              | 7.6 | 0.032                  |
| 04/19/99 | BD20           | 12.2              | 288.8              | 7.9 | 0.007                  |
| 07/19/99 | BD20           | 20.7              | 291.9              | 7.9 | 0.024                  |
| 02/07/00 | BD20           | 10.5              | 284.9              | 7.8 | 0.026                  |
| 07/17/00 | BD20           | 22.4              | 292.2              | 7.9 | 0.007                  |
| 02/12/01 | BD20           | 19.0              | 282.5              | 8.0 | 0.013                  |
| 08/06/01 | BD20           | 25.2              | 293.6              | 8.0 | 0.018                  |

#### An Example – Step 3

| Date     | RMP<br>Station | Salinity<br>(ppt) | Temperature<br>(K) | рН             | Fraction<br>Un-ionized |             |
|----------|----------------|-------------------|--------------------|----------------|------------------------|-------------|
| 01/27/97 | BD20           | 0.4               | 283.5              | 7.6            | 0.022                  |             |
| 04/21/97 | BD20           | 22.9              | 288.9              | 7.7            | 0.012                  |             |
| 08/04/97 | BD20           | 22.2              | 293.1              | 7.7            | 0.023                  |             |
| 02/02/98 | BD20           | 4.2               | 284.3              | 7.6            | 0.030                  |             |
| 04/14/98 | BD20           | 3.7               | 287.1              | 8.3            | 0.010                  |             |
| 07/27/98 | BD20           | 14.5              | 294.2              | 8.0            | 0.015                  |             |
| 02/08/99 | BD20           | 6.9               | 283.4              | 7.6            | 0.032                  |             |
| 04/19/99 | BD20           | 12.2              | 288.8              | 7.9            | 0.007                  |             |
| 07/19/99 | BD20           | 20.7              | 291.9              | 7.9            | 0.024                  |             |
| 02/07/00 | BD20           | 10.5              | 284.9              | 7.8            | 0.026                  |             |
| 07/17/00 | BD20           | 22.4              | 292.2              | 7.9            | 0.007                  |             |
| 02/12/01 | BD20           | 19.0              | 282.5              | 8.0            | 0.013                  |             |
| 08/06/01 | BD20           | 25.2              | 293.6              | 8.0            | 0.018                  | ^           |
|          |                |                   |                    | Median:        | 0.019                  | <b>1</b> 9° |
|          |                |                   | 901                | th Percentile: | 0.0321                 |             |
|          |                |                   |                    |                | Xn                     | ation       |



#### An Example – Step 4

| Date                             | RMP<br>Station                           | Salinity<br>(ppt) | Temperature<br>(K) | рН            | Fraction<br>Un-ionized |
|----------------------------------|------------------------------------------|-------------------|--------------------|---------------|------------------------|
| 01/27/97                         | BD20                                     | 0.4               | 283.5              | 7.6           | 0.022                  |
| 04/21/97                         | BD20                                     | 22.9              | 288.9              | 7.7           | 0.012                  |
| 08/04/97                         | BD20                                     | 22.2              | 293.1              | 7.7           | 0.023                  |
| 02/02/98                         | BD20                                     | 4.2               | 284.3              | 7.6           | 0.030                  |
| 04/14/98                         | BD20                                     | 3.7               | 287.1              | 8.3           | 0.010                  |
| 07/27/98                         | BD20                                     | 14.5              | 294.2              | 8.0           | 0.015                  |
| 02/08/99                         | BD20                                     | 6.9               | 283.4              | 7.6           | 0.032                  |
| 04/19/99                         | BD20                                     | 12.2              | 288.8              | 7.9           | 0.007                  |
| 07/19/99                         | BD20                                     | 20.7              | 291.9              | 7.9           | 0.024                  |
| 02/07/00                         | BD20                                     | 10.5              | 284.9              | 7.8           | 0.026                  |
| 07/17/00                         | BD20                                     | 22.4              | 292.2              | 7.9           | 0.007                  |
| 02/12/01                         | BD20                                     | 19.0              | 282.5              | 8.0           | 0.013                  |
| 08/06/01                         | BD20                                     | 25.2              | 293.6              | 8.0           | 0.018                  |
|                                  |                                          |                   |                    | Median:       | 0.019                  |
|                                  |                                          |                   | 90tl               | n Percentile: | 0.0321                 |
|                                  |                                          | Annual Median     | WQO for Un-ionize  | d Ammonia:    | 0.025                  |
|                                  | Maximum WQO for Un-ionized Ammonia: 0.16 |                   |                    |               |                        |
|                                  |                                          | Ch                | ronic WQO for Tota | al Ammonia:   | 1.3                    |
| Acute WQO for Total Ammonia: 5.0 |                                          |                   |                    |               |                        |

UDO 2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1

#### An Example – Step 4 (Chronic)

|                                                                        | Date                                            | RMP<br>Station | Salinity<br>(ppt) | Temperature<br>(K) | рН     | Fraction<br>Un-ionized |   |  |
|------------------------------------------------------------------------|-------------------------------------------------|----------------|-------------------|--------------------|--------|------------------------|---|--|
|                                                                        | 01/27/97                                        | BD20           | 0.4               | 283.5              | 7.6    | 0.022                  |   |  |
|                                                                        | 04/21/97                                        | BD20           | 22.9              | 288.9              | 7.7    | 0.012                  |   |  |
| Chronic WOO $(uv) = \frac{\text{Annual Median WQO}_{(un-ionized)}}{1}$ |                                                 |                |                   |                    |        |                        |   |  |
|                                                                        |                                                 |                | (fr               | action un          | -ioniz | ed)                    | - |  |
|                                                                        | 02/08/99                                        | BD20           | 0.9               | 283.4              | 1.0    | 0.032                  |   |  |
|                                                                        | 04/19/99                                        | BD20           | 12.2              | 288.8              | 7.9    | 0.007                  |   |  |
|                                                                        | 07/19/99                                        | BD20           |                   | 291.9              | 7.9    | 0.024                  |   |  |
|                                                                        | 02/07/00                                        | BD20           | Median for        | 284.9              | 7.8    | 0.026                  |   |  |
|                                                                        | 07/17/00                                        | BD20           | hronic WO(        | 292.2              | 7.9    | 0.007                  |   |  |
|                                                                        | 02/12/01                                        | BD20           |                   | 282.5              | 8.0    | 0.013                  |   |  |
|                                                                        | 08/06/01                                        | BD20           | 25.2              | 293.6              | 8.0    | 0.018                  |   |  |
|                                                                        | Median: 0.019                                   |                |                   |                    |        |                        |   |  |
|                                                                        | 90th Percentile: 0.0321                         |                |                   |                    |        |                        |   |  |
|                                                                        | Annual Median WQO for Un-ionized Ammonia: 0.025 |                |                   |                    |        |                        |   |  |
|                                                                        | Maximum WQO for Un-ionized Ammonia: 0.16        |                |                   |                    |        |                        |   |  |
|                                                                        | Chronic WQO for Total Ammonia: 1.3              |                |                   |                    |        |                        |   |  |
|                                                                        | Acute WQO for Total Ammonia: 5.0                |                |                   |                    |        |                        |   |  |

#### An Example – Step 4 (Acute)

| Date                                                                                      | RMP<br>Station                                                                                                                                                     | Salinity<br>(ppt) | Temperature<br>(K) | рН         | Fraction<br>Un-ionized |       |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------|------------------------|-------|
| 01/27/97                                                                                  | BD20                                                                                                                                                               | 0.4               | 283.5              | 7.6        | 0.022                  |       |
| 04/21/97                                                                                  | BD20                                                                                                                                                               | 22.9              | 288.9              | 7.7        | 0.012                  |       |
| Acute                                                                                     | Acute WQO $_{(\text{total})} = \frac{\text{Max WQO}_{(\text{un-ionized})}}{(\text{fraction un - ionized})} \begin{bmatrix} 023 \\ 030 \\ 010 \\ 015 \end{bmatrix}$ |                   |                    |            |                        |       |
| 02/08/99                                                                                  | BD20                                                                                                                                                               | 0.971             | 283.4              | 1.0        | 0.032                  | -     |
| 04/19/99                                                                                  | BD20                                                                                                                                                               | 12.2              | 288.8              | 7.9        | 0.007                  | _     |
| 07/19/99                                                                                  | BD20                                                                                                                                                               | $90^{\text{th}}$  | 291.9              | 7.9        | 0.024                  |       |
| 02/07/00                                                                                  | BD20                                                                                                                                                               | araantila fa      | 284.9              | 7.8        | 0.026                  |       |
| 07/17/00                                                                                  | BD20                                                                                                                                                               | ercentile lo      | 292.2              | 7.9        | 0.007                  |       |
| 02/12/01                                                                                  | BD20                                                                                                                                                               | Acute WQO         | 282.5              | 8.0        | 0.013                  |       |
| 08/06/01                                                                                  | BD20                                                                                                                                                               | 25.2              | 293.6              | 8.0        | 0.018                  |       |
|                                                                                           | Median: 0.019                                                                                                                                                      |                   |                    |            |                        |       |
|                                                                                           |                                                                                                                                                                    | Annual Median     | WQO for Un-ionize  | d Ammonia: | 0.025                  | 0.032 |
| Maximum WQO for Un-ionized Ammonia:     0.16       Chronic WQO for Total Ammonia:     1.3 |                                                                                                                                                                    |                   |                    |            |                        |       |
|                                                                                           | Acute WQO for Total Ammonia: 5.0                                                                                                                                   |                   |                    |            |                        |       |

### Ammonia Limits: Development Process

- 1. Water Quality Objectives
- 2. Total vs. Un-ionized Ammonia
- 3. Reasonable Potential Analysis
- 4. Calculating Effluent Limits

### **Two Approaches for Ammonia**

- <u>State Implementation Policy (SIP)</u> Adopted by State Water Board in 2000
- <u>Technical Support Document (TSD)</u> Published by USEPA in 1991

### **RPA – SIP Approach**

### Maximum total ammonia effluent concentration (MEC)



Most stringent converted WQO<sub>(total)</sub>

?

## **RPA – TSD Approach**

#### **Evaluate Both WQOs**



### **RPA – TSD Approach**

#### **Evaluate Both Receiving Water and Effluent Data**



### **RPA: TSD Approach** Actual RWC

**Receiving Water:** collect total ammonia, pH, salinity and temperature data

Calculate *concentration* of NH<sub>3</sub> for each sample

Determine median and maximum concentrations

Is median RWC > annual median WQO<sub>(un-ionized)</sub>?

Is maximum RWC> maximum WQO<sub>(un-ionized)</sub>?

### **RPA: TSD Approach** Projected RWC

Effluent: collect total ammonia, pH, and temperature data

Calculate concentration of NH<sub>3</sub> for each sample

Determine projected median & maximum RWC

Is median projected RWC > annual median WQO<sub>(un-ionized)</sub>?

Is maximum projected RWC > maximum WQO<sub>(un-ionized)</sub>?

### **RPA: TSD Approach** Projected RWC

Effluent: collect total ammonia, pH, and temperature data

Calculate concentration of NH<sub>3</sub> for each sample

Determine projected median & maximum RWC

Is median projected RWC > annual median WQO<sub>(un-ionized)</sub>?

Is maximum projected RWC > maximum WQO<sub>(un-ionized)</sub>?

### **RPA: TSD Approach** Projected RWC



### **Ammonia Limits:** *Development Process*

- 1. Water Quality Objectives
- 2. Total vs. Un-ionized Ammonia
- 3. Reasonable Potential Analysis
- 4. Calculating Effluent Limits

- Effluent limits are currently calculated using only the SIP.
- Modifications needed because "chronic" WQO for ammonia is annual median (instead of 4-day average):
  - Averaging period = 365 days
  - Sampling frequency (max) = 30 days/month

Median background concentration is used

| Total Ammonia WQBEL Calculations<br>(mg/L N) |                 |         |  |  |  |
|----------------------------------------------|-----------------|---------|--|--|--|
|                                              | ACUTE           | CHRONIC |  |  |  |
| Dilution Factor                              | 0               | 0       |  |  |  |
| No. of Samples per Month                     | 4               | 30      |  |  |  |
| Acute WQO                                    | 4.70            |         |  |  |  |
| Chronic WQO                                  |                 | 1.30    |  |  |  |
| Background Concentration                     | 0.16            | 0.07    |  |  |  |
| ECA acute                                    | 4.7             |         |  |  |  |
| ECA chronic                                  |                 | 1.3     |  |  |  |
| Avg of Effluent Data Points                  | 4.1             | 4.1     |  |  |  |
| Std Dev of Effluent Data Points              | 3.7             | 3.7     |  |  |  |
| CV                                           | 0.90            | 0.90    |  |  |  |
| ECA acute mult99                             | 0.22            |         |  |  |  |
| ECA chronic mult99                           |                 | 0.90    |  |  |  |
| LTA acute                                    | 1.05            |         |  |  |  |
| LTA chronic                                  |                 | 1.17    |  |  |  |
| Minimum of LTAs                              | 1.05            | 1.05    |  |  |  |
| MDEL mult99                                  | 4.47            | 4.47    |  |  |  |
| AMEL mult95                                  | 1.85            | 1.29    |  |  |  |
| MDEL                                         | 4.70            | 4.70    |  |  |  |
| AMEL                                         | <del>1.95</del> | 1.36    |  |  |  |

| Total Ammonia WQBEL Calculations |                 |         |  |  |  |
|----------------------------------|-----------------|---------|--|--|--|
|                                  | (mg/L N)        |         |  |  |  |
|                                  | ACUTE           | CHRONIC |  |  |  |
| Dilution Factor                  | 0               | 0       |  |  |  |
| No. of Samples per Monu.         | 4               | 30      |  |  |  |
| Acute WQ0                        | 4.70            |         |  |  |  |
| Chronic WQO                      |                 | 1.30    |  |  |  |
| Background Concentration         | 0.16            | 0.07    |  |  |  |
| ECA acute                        | 4.7             |         |  |  |  |
| ECA chronic                      |                 | 1.3     |  |  |  |
| Avg of Effluent Data Points      | 4.1             | 4.1     |  |  |  |
| Std Dev of Effluent Data Points  | 3.7             | 3.7     |  |  |  |
| CV                               | 0.90            | 0.90    |  |  |  |
| ECA acute mult99                 | 0.22            |         |  |  |  |
| ECA chronic mult99               |                 | 0.90    |  |  |  |
| LTA acute                        | 1.05            |         |  |  |  |
| LTA chronic                      |                 | 1.17    |  |  |  |
| Minimum of LTAs                  | 1.05            | 1.05    |  |  |  |
| MDEL mult99                      | 4.47            | 4.47    |  |  |  |
| AMEL mult95                      | 1.85            | 1.29    |  |  |  |
| MDEL                             | <del>4.70</del> | 4.70    |  |  |  |
| AMEL                             | <del>1.95</del> | 1.36    |  |  |  |

#### Converted WQOs

| Total Ammoi                     |                 |         |               |
|---------------------------------|-----------------|---------|---------------|
|                                 | ACUTE           | CHRONIC |               |
| Dilution Factor                 | 0               | 0       |               |
| No. of Samples per Month        | 4               | 30      |               |
| Acute WQO                       | 4.70            |         |               |
| Chronic WQO                     |                 | 1.30    |               |
| Background Concentration        | 0.16            | 0.07    |               |
| ECA acute                       | 4.7             |         | Calculations  |
| ECA chronic                     |                 | 1.3     | Adjusted for  |
| Avg of Effluent Data Points     | 4.1             | 4.1     | Aujusteu Ioi  |
| Std Dev of Effluent Data Points | 3.7             | 3.7     | Annual Median |
| CV                              | 0.90            | 0.90    |               |
| ECA acute mult99                | 0.22            |         |               |
| ECA chronic mult99              |                 | 0.90    |               |
| LTA acute                       | 1.05            |         |               |
| LTA chronic                     |                 | 1.17    |               |
| Minimum of LTAs                 | 1.05            | 1.05    |               |
| MDEL mult99                     | 4.47            | 4.47    |               |
| AMEL mult95                     | 1.85            | 1.29    |               |
| MDEL                            | 4.70            | 4.70    |               |
| AMEL                            | <del>1.95</del> | 1.36    |               |

| Total Ammonia WQBEL Calculations<br>(mg/L N) |                                                                                                                                                      |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ACUTE                                        | CHRONIC                                                                                                                                              |  |  |  |  |
| 0                                            | 0                                                                                                                                                    |  |  |  |  |
| 4                                            | 30                                                                                                                                                   |  |  |  |  |
| 4.70                                         |                                                                                                                                                      |  |  |  |  |
|                                              | 1.30                                                                                                                                                 |  |  |  |  |
| 0.16                                         | 0.07                                                                                                                                                 |  |  |  |  |
| 4.7                                          |                                                                                                                                                      |  |  |  |  |
|                                              | 1.3                                                                                                                                                  |  |  |  |  |
| 4.1                                          | 4.1                                                                                                                                                  |  |  |  |  |
| 3.7                                          | 3.7                                                                                                                                                  |  |  |  |  |
| 0.90                                         | 0.90                                                                                                                                                 |  |  |  |  |
| 0.22                                         |                                                                                                                                                      |  |  |  |  |
|                                              | 0.90                                                                                                                                                 |  |  |  |  |
| 1.05                                         |                                                                                                                                                      |  |  |  |  |
|                                              | 1.17                                                                                                                                                 |  |  |  |  |
| 1.05                                         | 1.05                                                                                                                                                 |  |  |  |  |
| 4.47                                         | 4.47                                                                                                                                                 |  |  |  |  |
| 1.85                                         | 1.29                                                                                                                                                 |  |  |  |  |
| 4.70                                         | 4.70                                                                                                                                                 |  |  |  |  |
| 1.95                                         | 1.36                                                                                                                                                 |  |  |  |  |
|                                              | hia WQBEL Calcul<br>(mg/L N)<br>ACUTE<br>0<br>4<br>4.70<br>0.16<br>4.7<br>4.1<br>3.7<br>0.90<br>0.22<br>1.05<br>1.05<br>4.47<br>1.85<br>4.70<br>1.95 |  |  |  |  |

Select Lower Pair for Final Limits

#### **Dilution Credits**

- Dilution credits are necessary for compliance in many cases
- Deepwater dischargers:
  - Currently OK to use actual initial dilution > 10:1 for ammonia
  - Need to provide dilution studies that are representative of current conditions
- Shallow water dischargers:
  - Need current dilution study
  - Need to justify a mixing zone that meets SIP conditions

### **Preparing for Ammonia Limits**

6-12 months before permit application is due:

- Conduct dilution study
- Identify recommendations to Regional Water Board staff to ensure compliance
- Submit materials with Report of Waste Discharge (ROWD)

### Some Ammonia Data for the Bay

