

BACWA Workshop: Nutrient Reduction by Treatment Optimization and Upgrades Update

BACWA Workshop 27 June 2016

© 2016 HDR, Inc., all rights reserved.

Agenda

- Watershed Permit Background
- Project Approach/Status
- Assumptions
- Case Studies
- Report Feedback
- Summary of Preliminary Wave 1 Load Reductions and Cost Estimates
- Additional Data Requests
- Group Annual Report
- Next Steps
- Q/A

Watershed Permit Background

Watershed Permit

EDMUND G. BROWN JR. GOVERNOR

MATTHEW RODRIQUEZ SECRETARY FOR ENVIRONMENTAL PROTECTION

San Francisco Bay Regional Water Quality Control Board

ORDER No. R2-2014-0014 NPDES No. CA0038873

WASTE DISCHARGE REQUIREMENTS FOR NUTRIENTS FROM MUNICIPAL WASTEWATER DISCHARGES TO SAN FRANCISCO BAY

The following dischargers are subject to waste discharge requirements (WDRs) set forth in this Order, for the purpose of regulating nutrient discharges to San Francisco Bay and its contiguous bay segments:

Table 1. Discharger Information

Discharger	Facility Name	Facility Address	Minor/ Major
		151 Mozzatta Court	

Project Purpose

- Increase Understanding for each Plant and Subembayment
- Understand the Possible Cost and Load Reductions for:
 - $_{\circ}$ Optimization
 - Sidestream Treatment
 - Plant Upgrades
 - Nutrient Load Reduction By Other Means
- Assist with making an informed decision for nutrient load reduction (if supported by sound science)

Watershed Permit Requirements

► Issued April 9, 2014 – Regional Water Board Order No. R2-2014-0014

≻Requirements:

- Scoping and Evaluation Plan (Accepted first quarter of 2015)
- July 2018: Task 1 Conduct treatment plant optimization and sidestream treatment evaluation for nutrient load reductions (Submittal deadline is July 2018)
- July 2018: Task 2 Conduct treatment plant upgrades and analysis of removal by other means for nutrient load reductions (Submittal deadline is July 2018)
- Annual Reporting (Annual submittal in October from 2015 through 2018)

37 Participating Agencies

Project Approach and Status

Overview / Status of Study

Reports are being prepared in 4 Waves. Draft Wave 1 reports are complete and results will be shared today.

Scoping and Evaluation Plan - Timeline

- Presented the approach to the Regional Board in December 2014
- Submitted in February 2015
- Accepted in February 2015

Potential Nutrient Reduction by Treatment Optimization and Treatment Upgrades

F35

Brown ---- Caldw

San Francisco Regional Water Quality Control

Treatment Levels

Level	Study	Ammonia	TN	TP
Level 1 *	Optimization			
Level 2 *	Upgrades	2 mg N/L	15 mg N/L	1.0 mg P/L
Level 3 *	Upgrades	2 mg N/L	6 mg N/L	0.3 mg P/L

* The seasonal impacts will be considered for all three treatment levels:

- Dry Season = May 1 to September 30
- Wet Season = October 1 to April 30

Data Review and Site Visits

Potential Nutrient Reduction by Treatment Optimization and Treatment Upgrades

Facility Information		
Facility Name		
Address		
Facility Contact		
Date of Visit		
Facility Attendees		
Consultant Mgmt Group Attendees		
Consultant Process Engineer		
Consultant Operations Expert		
Describe Existing Nutrient Limits (if any)	Ammonia = 170 mg N/L AMEL and 220 mg N/L MDEL	
Permitted Capacity	19.5 mgd ADWF; 31.1 mgd PWWF	

Current Conditions				
Flow	Summer	Winter		
Annual Average Flow, mgd	13.0	13.1		
Peak Month, mgd	13.3	13.7		
Max Day, mgd	14.3	17.0		
Peak Hour Flow, mgd	19	31.5		
TSS Loads (Marginal seasonal im	pacts)			
Annual Average, Ib/d	38,500	38,900		
Peak Month, Ib/d	42,500	43,400		
Max Day, Ib/d	58,500	60,500		
BOD Loads (Marginal seasonal im	ipacts)			
Annual Average, Ib/d	35,700	37,400		
Peak Month, Ib/d	38,700	41,700		
Max Day, Ib/d	42,300	54,300		
Ammonia Loads (Marginal seasonal impacts)	Summer	Winter		

	BACWA
\sim	BAY AREA
	CLEAN WATER
	AGENCIES

	Current Conditions	
Annual Average, Ib/d	3,500	3,800
Peak Month, Ib/d	3,800	4,100
Max Day, Ib/d	3,800	4,400
KN Loads (Marginal sea	sonal impacts)	
Annual Average, Ib/d	5,400	5,700
Peak Month, Ib/d	6,000	6,200
Max Day, Ib/d	6,500	6,300
Ortho-P Loads (Marginal s	easonal impacts)	
Annual Average, Ib/d	360	370
Peak Month, Ib/d	420	490
Max Day, Ib/d	430	610
Total P Loads (Marginal s	easonal impacts except for Max Day	
Annual Average, Ib/d	690	700
Peak Month, Ib/d	760	780
Max Day, Ib/d	2,100 High due to solids from water recycling return streams	900

 The current flows and loads are in-line with the Master Plan historical and projected flows and loads. The current flows and loads show marginal seasonal impacts on flows and loads.

 The max day summer total P loads are high due to phosphorus in the solids return stream from the Recycled Water Facility (RWF). Delta Diablo adds ferrous chloride (FeCl2) to their sewer at the Pittsburg and Antioch pump stations (PS) and alum at the ActiFlo® process located at the RWF.

	Documentation (check all available documents)		
	Ø	Current Master Plan	
	B	PFD	
-		Facility Plan	
		Sea Level Rise Report	

Optimization Concepts

- Use offline tankage
- Operate in split treatment mode
- Modify operational mode (e.g., raise SRT)
- Modify blower set points
- Add chemicals
 - P removal
 - $_{\circ}\,$ To unlock downstream capacity
- Shut down aeration to create anoxic zones
- Process control instrumentation
- Add internal recycle for denitrification

Sidestream Nutrient Load Contributions

- Are you a candidate?
- Which Technology?
 - Deammonification (i.e., Anammox)
 - Conventional Nitrification

Sidestream ContributionMain Stream Contribution

Overview of Plant Upgrades

- Evaluate Master Plan and CIP for future upgrades
- Identify strategies to meet Level 2 and Level 3
- Select appropriate technology
- Determine cost, implementation requirements & plant impacts
- Consider innovative technologies
- Discuss ideas with plant staff and get feedback

Adapted from Tetra Tech (2013) and Parker et al. (2011)

Basic Assumptions

Assumptions

 Planning Periods and Load Projections

 Optimization: through year 2025 (default: 0% change in flow; 15% increase in loads)
 Upgrades/Sidestream: plant permitted capacity

Economic factors:

Table 3-4. Assumptions for Life Cycle Analysis

Scenario	Discount Rate	Period (yr)
Optimization	2%	10
Side Stream Treatment	2%	30
Level 2	2%	30
Level 3	2%	30

Assumptions

- Common Cost Estimating Factors
 - Energy: \$0.17/kWh
 - Labor: \$150/hr
 - Chemicals: Bay Area Chemical Consortium costs
- Greenhouse Gas Emissions

 Energy: Bay Wide Assumption
 on Energy Type (eGrid EPA
 Value)
 - Chemicals: Unit Value for Mining/Manufacturing

BACWA BAYAREA CLEAN WATER				
Appondi				
Appendix A. Basis	50	Brown to C	aldwall	
Allowances for	n C	Ost Estimatos		
added to the main		andles		
The unit of the major facility costs to deter	ISIS WE	ere included using a most		
the unit costs for power chomical	nine tr	e capital cost (see Table). These allowances		
selected for this analysis	labor a	The shown in T-1.	1) D	
Table 4		able 2. A common unit cost has		
Table T. Allowanced Used in double		unit cost basis i	vas	
Undefined Items	oping	the Opinion act		
Undefined Unit Processor		opinion of Probably Cost		
Miscellaneous Site Structure		,		
Site Conditions		20%		
Sitework		15%	\neg	
Yard Piping				
Soil Conditions		10%		
Site Electrical Power Distribution		5%	7	
Sontractor's Costs		7%	7	
Field General Conditions, Mobilization		1%	3	
Sales Tax (Allowance)]	
General Contractor Overhead and Profit Bonds and Insurance Construction Contingency - Change Over		12%]	
		6%		
		10%		
Engineer		1.5%		
Construction		4%	t i	
Legal Signal Anagement				
Logal, Fiscal, Administration, Environmental	10%			
(interited)		10%		
Table o u		5%		
Unit Costs				
Onie				
Power	Cont			
Labor		2081		
50% Sodium Hydroxide		\$0.17 per kWb		
Bulk Chlorine		\$150 per hour		
Ferric Chloride		\$350 per ton		
Hydrated Lime		\$0.43/gal for 12 per		
Liquid Alum		\$619/dry top		
Methanol		\$396/wet ton (45% alkali 5)		
Citric Acid		\$0.80/aa/		
Polymer (Emulsion)		\$1,25/gal		
(\$6.38/gal or \$1.15m		
		\$9.10/gal which is \$1.00m		
	1.07/1b			

Cost Calculations

- Estimate Capital, O&M, and Net Present Value Costs

 Dry and Wet Season
 - $_{\circ}$ N&P, N, and P removal
 - Exclude current operating cost
- Compare results by plant for unit cost for nutrient removal
 \$/gpd capital
 - o \$ Net Present Value
 - $_{\circ}$ %/lb N removed cost for processes removing N
 - \$/Ib P removed cost for processes removing P

Example Outcome

Case 1

High unit capital cost
Modest unit removal cost

Case 2

Tweak plant already removing nutrient

 $_{\rm o}$ Low capital cost

Very high unit removal cost

• Case 3

- Easy to convert (existing tankage)
- Low operation cost
- Efficient overall nutrient reduction

Unit Capital Cost (\$/gpd capital) → Investment required to implement Unit Nutrient Reduction Cost (\$/lb) → Efficiency of removal

			Case 1	Case 2	Case 3
	Flow	mgd	10	10	10
	PV Cap	\$mil	7.0	1.0	4.0
	PV total	\$mil	10.0	5.0	5.0
t	N removal	mil lb	5.0	0.5	3.0
•	Investment	\$/gpd	0.7	0.1	0.4
	Efficiency	\$/Ib N	2.0	10.0	0.6

Case Studies

Oro Loma Sanitary District City of Benicia Delta Diablo

Oro Loma

Optimization Details – Concepts Analysis

- Introduce each concept considered and rationale on whether to carry forward in the analysis
 - Optimization Strategy 1: Optimize ferric chloride addition to the existing chemical feed facilities at the primary clarifiers. This effectively turns the primaries into chemically enhanced primary treatment (CEPT) to increase phosphorus, TSS, and BOD removal. OLSD does not currently add chemicals.
 - Is it feasible? Yes. The facilities already exist.
 - Potential impact on ability to reduce nutrient discharge loads? Increase P removal and reduce loading to the downstream activated sludge process. This could enhance the potential to remove ammonia in the downstream activated sludge.
 - Result from analysis: It will marginally increase P removal because the plant is already removing P in the downstream activated sludge. However, it will improve the day to day reliability for P removal, unlock downstream treatment capacity, and is thus deemed potentially viable.
 - Recommendation: Carry forward.

Optimization Details – Concepts Analysis

• Describe the capital and operating elements for concepts carried forward

Capital Elements	Operating Elements
 CEPT for P Removal No additional chemical facilities 	Optimize the existing facilities
 Increase the SRT and Use Old Secondaries No capital elements to increase the SRT Modifications to the RAS piping/valving Modifications to the Primary Effluent channel New pumps to return mixed liquor from old secondaries to the aeration basins 	 Decrease the WAS pumping rate to increase SRT sufficient for nitrification Divert of portion or all of RAS to the old secondaries Modify the level controls to divert a portion or all of primary effluent to the old secondaries Pump mixed liquor from the old secondaries to the aeration basins
 Increase the RAS Return Rate No additional pumping capacity 	Optimize the existing facilities
 Chemical Addition to Digested Biosolids Metal salt and polymer facilities 	 Metal salt and polymer addition to digested solids (upstream of dewatering)

Oro Loma - Optimization

- 1. Chemical to primaries
- 2. Raise SRT, extend aeration tank, operate in SNDN
- 3. Increase RAS return rate
- 4. Chemical to dewatering

Optimization - Load Reduction

• Provide the projected ammonia, nitrogen and phosphorus discharge loads for the optimization concepts carried forward in the analysis

Table 4-2. Projected Discharge Nitrogen and Phosphorus Loads for Optimization

Parameter	Units	NH4-N Dry Season	NH4-N Wet Season	TN Dry Season	TN Wet Season	TP Dry Season	TP Wet Season
Current Discharge ¹	lb N or P/d	3,340	3,580	3,650	3,750	150	170
Discharge with Optimization Strategy ²	lb N or P/d	570	660	2,040	2,350	30	30
Load Reduction ³	lb N or P/d	2,770	2,920	1,610	1,400	120	140
Load Reduction ³	%	83%	82%	44%	37%	81%	81%

1. Average for the period between 2016-2025 based on 2015 BACWA Group Annual Report, escalated based on influent load increases over the period.

2. Average for the period between 2016-2025 for optimized performance based on influent load increases over the period.

3. As compared to Current Discharge (Note 1).

Optimization - Costs

Table 4-3. Projected Costs and Nutrient Unit Costs for Optimization Strategy

Parameter	Units	Dry Season	Wet Season
Capital ¹	\$ Mil	7.2	7.6
Annual O&M	\$ Mil/yr	0.4	1.3
Present Value O&M	\$ Mil	3.4	12.1
Present Value Total	\$ Mil	10.6	19.7
Unit Capital Cost	\$/gpd	0.6	0.6
NH4-N Cost ^{2,4}	\$/Ib NH4-N	1.1	1.9
TN Cost ^{2,4}	\$/Ib N	1.8	3.9
TP Cost ^{3,4}	\$/Ib P	5.9	5.9

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. Based on cost for nitrogen removal only

3. Based on cost for phosphorus removal only

4. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 10-year projection duration.

Optimization - Ancillary and Adverse Impacts

Table 4-5. Ancillary Benefits and Impacts for Optimization Strategy			
Ancillary Benefits	Adverse Impacts		
 CEPT for P Removal More organics and solids diverted to produce more biogas Less oxygen demand on the downstream activated sludge Phosphorus reliably removed under peak flow scenarios 	Dependency on chemicalsChemical costs		
 Increase the SRT and Use Old Secondaries Improved secondary clarifier settleability due to longer SRT Increased TSS and BOD load reduction in the Secondary Clarifiers due to longer SRT Reduced waste activated sludge yield Improved contaminants of emerging concern removal 	 Operating a more complex process Additional energy demand Foaming concerns Might require alkalinity addition 		
 Increase the RAS Return Rate Ability to store RAS in the old secondaries during peak wet weather events (if necessary) Alkalinity recovery from nitrogen reduction 	Additional energy demand by pumping more RAS		
 Chemical Addition to Digested Biosolids Increased cake percentage Assist with struvite related issues 	Dependency on chemicalsChemical costs		

Oro Loma – Sidestream Treatment

- 1. Nitrogen Removal Options:
 - a) Deammonification(i.e., anammox type)(default)
 - b) Conventional nitrification
- Phosphorus Removal: Chemical Precipitation (Not Applicable for OLSD)

Sidestream - Facilities

Report will provide a list of the key capital elements for Sidestream Treatment of Ammonia/TN and TP

Table 5–1. Sidestream Treatment Facility Needs for Ammonia/TN or TP Load Reduction

Ammonia/TN Load Reduction Elements	TP Load Reduction Elements*
Feed Pumping (if necessary)	
Feed Flow Equalization	
Pre-Treatment Screens	
Biological Reactor	
Aeration Supply Equipment	
Effluent Pumping (if necessary)	

* Sidestream treatment for TP discharge load reduction not recommended as previously discussed

Sidestream – Costs

Deammonification Technology Recommended (Anticipate a 21% TN Load Reduction)

Table 5-3. Projected Costs and Nutrient Unit Costs for Sidestream Treatment

Parameter	Units	Ammonia/TN	TP⁵
Capital	\$1,000 ¹	16,000	
Annual O&M	\$1,000/yr	940	
Total Present Value	\$1,000 ²	37,000	
NH4-N Cost ^{2,4}	\$/lb N	3.1	
TN Cost ^{2,4}	\$/lb N	3.1	
TP Cost ^{3,4}	\$/lb P		

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. Based on cost for ammonia/nitrogen removal only.

3. Based on cost for phosphorus removal only.

4. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 30-year projection duration.

5. Sidestream treatment for TP discharge load reduction not recommended as previously discussed

Upgrade Details – Facilities

Report will provide a list of the key capital elements for throughout the plant for Levels 2 and 3

Table 6-1. Facility Needs Overview for Level 2 and 3 Plant Upgrades

Treatment	Level 2	Level 3
Primary		
Flow Equalization	Expand the existing flow equalization basins (under the Ecotone Project)	Same as Level 2
Biological	 Modification to MLE (same as optimization) Replace mechanical aeration with fine- bubble aeration system Air Piping Alkalinity No new secondaries 	 Same as Level 2 plus: Expansion of aeration basin volumes External carbon source
Tertiary		 New Filters Ferric Chloride and Polymer Chemical Feed Rapid Mix and Flocculation Tanks
Biosolids or Sidestream	Deammonification Sidestream Treatment	Same as Level 2

Oro Loma – Level 2

- 1. Chemical to primaries
- 2. Raise SRT, extend aeration tank, operate in SNDN
- 3. Increase RAS return rate
- 4. Chemical to dewatering
- 5. Expand flow equalization
- 6. Replace mechanical aeration with fine-bubble diffusers and a blower building
- 7. Sidestream treatment (Deammonication)

1 B Level 2 (1) Chemical to primaries (2) Raise SRT, extend aeration tank, operate as SNDN (3) Increase RAS return rate (4) Chemical to dewatering (5) Expand flow equalization(6) Replace mechanical aeration with fine-bubble diffusers 5 and a blower building (shown) (7) Sidestream treatment (Deammonication) 2012 Google

Oro Loma – Level 3

- 1. Chemical to primaries
- 2. Raise SRT, extend aeration tank, operate as SNDN
- 3. Increase RAS return rate
- 4. Chemical to dewatering
- 5. Expand flow equalization
- Replace mechanical aeration with fine-bubble diffusers and a blower building
- 7. Sidestream treatment (Deammonication)
- 8. Filtration and chemical feed facilities

Level 3

- (1) Chemical to primaries
- (2) Raise SRT, extend aeration tank, operate as SNDN

8

1 B

2012 Google

5

h

2

h

- (3) Increase RAS return rate
- (4) Chemical to dewatering
- (5) Expand flow equalization
- (6) Replace mechanical aeration with fine-bubble diffusers and a blower building (shown)
- (7) Sidestream treatment (Deammonication)
- (8) Filtration and chemical feed facilities

Upgrade Details – Cost

Table 6-2. Estimated Capital and O&M Costs for Nitrogen and Phosphorus Plant Upgrades

Parameter	Unit	Level 2 Dry Season	Level 2 Wet Season	Level 3 Dry Season	Level 3 Wet Season
TN and TP Removal					
Capital ¹	\$ Mil	28	38	52	74
Annual O&M	\$Mil/yr	0.3	1.5	0.6	3.0
Total Present Value ²	\$ Mil	35	72	89	142
Unit Capital Cost	\$/gpd	1.4	1.7	2.6	3.3
TN Removal					
Capital ¹	\$ Mil	28	38	44	55
Annual O&M	\$ Mil/yr	0.4	1.5	1.4	2.7
Total Present Value ²	\$ Mil	35	72	73	114
TN Cost ³	\$/Ib N	1.3	2.8	1.8	2.8
TP Removal					
Capital ¹	\$ Mil	0	0	8	18
Annual O&M	\$ Mil/yr	0.4	0.4	0.6	0.8
Total Present Value ²	\$ Mil	8	9	23	35
TP Cost ³	\$/lb P	14	14	14	20

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. PV is calculated based on a 2 percent discount rate for 30 years.

3. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 30-year projection duration.

Upgrade Details – Ancillary and Adverse Impacts

Strategy	Ancillary Benefits	Adverse Impacts
Level 2	 Leverage existing aeration basins and secondary clarifiers Robust technology to absorb variability in flows and loads Ability to reliably remove ammonia and TN Reduced solids production Reduced TSS and BOD discharge loading Improved CEC removal compared to existing activated sludge 	 New aeration system to learn, operate, and maintain More complex to operate than existing activated sludge New sidestream treatment facility to operate and maintain More chemicals than current
Level 3	 Same as Level 2 plus the following additional benefits: Further enhanced CEC removal compared to Level 2 as any particulate bound CECs should be captured in the filters Leverage and expand existing filter facility 	 Same as Level 2 plus the following additional adverse impacts: More chemicals required than Level 2 Safety from external carbon source (if methanol) Additional unit process to operate (filters and sedimentation)

Upgrades – Emerging Technologies

- Introduce two technologies specific for each plant
- Advantages and disadvantages for each technology
- Potential next steps for each technology

The following two innovative technologies were specifically identified for future consideration at OLSD:

- Nutrient Removal using Granular Sludge this could be used to phase out the biotower/activated sludge and/or MBR. The application of granular sludge means process tankage requirements are reduced which reduces overall costs. One supplier, Nereda, has large full-scale installations overseas in the Netherlands and South Africa; however, there are currently no full-scale installations in North America.
 - Advantages: Low footprint requirements, energy efficient, ability to remove ammonia, TN, and TP.
 - > Disadvantages: No installations in North America.
 - Potential Next Steps: Determine footprint requirements and estimated cost of full-scale system and consider pilot or demonstration testing.
- Membrane Aerated Biofilm Reactor (MABR) this aeration technology could replace the mechanical aeration system within the existing aeration basins. The membrane is used to deliver air (inside-out) and the activated sludge biology resides as a biofilm on the membrane. The biology takes up the air as it is delivered through the membrane. This configuration has been shown to use more or less all the provided air and thus results in a compact footprint. There are a few suppliers with several on-going piloting studies. However, there are currently no full-scale installations in North America.
 - Advantages: Low footprint requirements, energy efficient, ability to remove ammonia, TN, and TP.
 - > Disadvantages: No installations in North America.
 - Potential Next Steps: Determine footprint requirements and cost of full-scale system and consider pilot or demonstration testing.

Executive Summary

Table ES-1. Summary of Costs and Load Reductions

Parameter	Unit	Current Dry Season ¹	Current Wet Season ¹	Opt. Dry Season ²	Opt. Wet Season ²	Level 2 Dry Season ²	Level 2 Wet Season ²	Level 3 Dry Season ²	Level 3 Wet Season ²	Side- stream ²
Flow to Bay	mgd	12.0	13.5	12.0	13.5	16.0	18.0	16.0	18.0	
Nutrients to Bay (Average)										
Ammonia	lb N/d	3,111	3,334	570	660	270	300	270	300	3,420
TN	lb N/d	3,391	3,493	2,040	2,350	2,000	2,250	800	900	3,920
TP	lb P/d	140	157	30	30	130	150	40	40	170
Costs 3										
Capital	\$ Mil			7.2	7.6	28	38	52	74	16
PV O&M	\$ Mil			3.4	12.1	7	34	37	68	21
Total PV	\$ Mil			10.6	19.7	35	72	89	142	37
Unit Costs										
Capital	\$/gpd			0.6	0.6	1.4	1.7	2.6	3.3	
TN Cost ⁴	\$/Ib N			1.8	3.9	1.3	2.8	1.8	2.8	3.1
TP Cost ⁴	\$/Ib P			5.9	5.9	14	14	14	20	

Benicia

Optimization Strategy

Optimization Siting

Optimization Costs

Table 4-3. Projected Costs and Nutrient Unit Costs for Optimization Strategy

Parameter	Units	Dry Season	Wet Season
Capital ¹	\$ Mil	0.4	0.4
Annual O&M	\$ Mil/yr	0.02	0.03
Present Value O&M	\$ Mil	0.2	0.2
Present Value Total	\$ Mil	0.6	0.7
Unit Capital Cost	\$/gpd	0.2	0.2
NH4-N Cost ^{2,4}	\$/Ib NH4-N	0	0
TN Cost ^{2,4}	\$/Ib N	0	0
TP Cost ^{3,4}	\$/Ib P	4	4

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. The recommended optimization strategy does not address ammonia or total nitrogen removal.

3. Based on cost for P removal only.

4. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 10-year projection duration.

Sidestream – Costs

Deammonification Technology Recommended (Anticipate a 11% TN Load Reduction) plus Chemical Precipitation for TP Removal (Anticipate a 32% TP Load Reduction)

Parameter	Units	Ammonia/TN	ТР
Capital	\$ Mil ¹	3.3	0.09
Annual O&M	\$ Mil/yr	0.08	0.02
Total Present Value	\$ Mil ²	5.2	0.5
NH4-N Cost ^{2,4}	\$/lb N ³	6.5	
TN Cost ^{2,4}	\$/lb N ³	6.5	
TP Cost 3,4	\$/lb P ³		2.0

Table 5-3. Projected Costs and Nutrient Unit Costs for Sidestream Treatment

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. Based on cost for ammonia/nitrogen removal only

3. Based on cost for phosphorus removal only

3. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 30-year projection duration.

Level 2 Upgrades

Level 2 Siting

Level 3 Upgrades

Level 3 Siting

Level 2 and 3 Upgrade Costs

Table 6-2. Estimated Capital and O&M Costs for Nitrogen and Phosphorus Plant Upgrades

Parameter	Unit	Level 2 Dry Season	Level 2 Wet Season	Level 3 Dry Season	Level 3 Wet Season
TN and TP Removal					
Capital ¹	\$ Mil	24.1	24.3	33.7	35.3
Annual O&M	\$Mil/yr	0.14	0.17	0.41	0.46
Total Present Value ²	<mark>\$ Mil</mark>	27	28	43	46
Unit Capital Cost	\$/gpd	5.4	4.8	7.5	6.9
TN Removal					
Capital ¹	\$ Mil	23.6	23.8	27.3	27.5
Annual O&M	\$ Mil/yr	0.10	0.12	0.26	0.30
Total Present Value ²	\$ Mil	26	27	33	34
TN Cost ^{3,4}	\$/lb N	6.6	6.7	5.1	4.9
TP Removal					
Capital ¹	\$ Mil	0.5	0.5	6.4	7.8
Annual O&M	\$ Mil/yr	0.04	0.05	0.14	0.16
Total Present Value ²	\$ Mil	1.4	1.6	9.6	11.3
TP Cost ³	\$/lb P	2.2	2.1	11.1	11.6

Removal By Other Means

 Produce up to 2,200 AFY of Title 22 Recycled Water at the City of Benicia's WWTP for use as cooling tower makeup water at the Valero Benicia Refinery and for irrigation water for other City customers

Executive Summary

Table ES-1. Summary of Costs and Load Reductions

Parameter	Unit	Current Dry Season ¹	Current Wet Season¹	Opt. Dry Season	Opt. Wet Season	Level 2 Dry Season	Level 2 Wet Season	Level 3 Dry Season	Level 3 Wet Season	Side- stream
Flow to Bay	mgd	1.9	2.2	1.9	2.2	3.2	3.7	3.2	3.7	-
Nutrients to Bay (Average)										
Ammonia	lb N/d	389	420	419	452	53	61	53	61	560
TN ⁶	lb N/d	475	513	511	551	400	457	160	183	700
TP	lb P/d	55	62	15	17	27	30	8	9	60
Costs ²				R ^a						
Capital	\$ Mil			0.4	0.4	24	24.1	24.3	33.7	3.4
PV O&M	\$ Mil			0.2	0.2	3	3.2	3.8	9.1	2.2
Total PV	\$ Mil			0.6	0.7	27	27.3	28.1	42.8	5.7
Unit Costs										
Capital	\$/gpd			0.2	0.2	5.4	4.8	7.5	6.9	6.5
TN Cost 3,7	\$/lb N			0	0	6.6	6.7	5.1	4.9	6.5
TP Cost ³	\$/lb P			4.4	4.1	2.2	2.1	11.1	11.6	2.0

Delta Diablo

Delta Diablo - Optimization

- 1) Optimize metal salt dosing to enhance existing P removal
- 3) Split treatment at the biotowers for ammonia removal
- 4) Add anoxic zone to aeration basin for total nitrogen removal (predicated on implementation of (3))

Optimization - Costs

Table 4-3. Projected Costs and Nutrient Unit Costs for Optimization Strategy

Parameter	Units	Dry Season	Wet Season
Total Capital ¹	\$ Mil	5.6	6.0
Annual O&M	\$ Mil/yr	0.02	1.1
Present Value O&M	\$ Mil	0.2	10
Present Value Total	\$ Mil	6	16
Unit Capital Cost	\$/gpd	0.4	0.5
NH4-N Cost ^{2,4}	\$/Ib NH4-N	2.4	13.1
TN Cost ^{2,4}	\$/lb N	1.4	3.6
TP Cost ^{3,4}	\$/Ib P	21	15

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. Based on cost for nitrogen removal only

3. Based on cost for phosphorus removal only

4. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 10-year projection duration.

Sidestream – Costs

Deammonification Technology Recommended (Anticipate a 17% TN Load Reduction)

Table 5-3. Projected Costs and Nutrient Unit Costs for Sidestream Treatment

Parameter	Units	Ammonia/TN	TP⁵
Capital	\$ 1,000 ¹	12,000	
Annual O&M	\$ 1,000/yr	610	
Total Present Value	\$ 1,000	26,000	
NH4-N Cost ^{2,4}	\$/lb N	3.3	
TN Cost ^{2,4}	\$/lb N	3.3	
TP Cost 3,4	\$/lb P		

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. Based on cost for ammonia/nitrogen removal only.

3. Based on cost for phosphorus removal only.

4. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 30-year projection duration.

5. Sidestream treatment for TP discharge load reduction not recommended as previously discussed

Delta Diablo – Level 2

- 1. New membrane bioreactor,
- 2. Convert aeration basin zone to anoxic zone
- 3. External carbon source facilities
- 4. Alkalinity facilities
- 5. New BAF facilities
- 6. External carbon source facilities
- 7. New denitrifying filters
- 8. External carbon source facilities
- 9. Metal salt/polymer chemical facilities

Delta Diablo – Level 3

- 1. New membrane bioreactor,
- 2. Convert aeration basin zone to anoxic zone
- 3. External carbon source facilities
- 4. Alkalinity facilities
- 5. New BAF facilities
- 6. External carbon source facilities
- 7. New denitrifying filters
- 8. External carbon source facilities
- 9. Metal salt/polymer chemical facilities
- 10. Rapid mix/flocculation tanks

Upgrade Details – Cost

Table 6-2. Estimated Capital and O&M Costs for Nitrogen and Phosphorus Plant Upgrades

Parameter	Unit	Level 2 Dry Season	Level 2 Wet Season	Level 3 Dry Season	Level 3 Wet Season
TN and TP Removal					
Capital ¹	\$ Mil	110	140	120	150
Annual O&M	\$Mil/yr	1.6	3.7	1.7	3.8
Total Present Value²	\$ Mil	150	220	160	240
Unit Capital Cost	\$/gpd	5.5	7.2	6.0	7.9
TN Removal					
Capital ¹	\$ Mil	110	140	120	150
Annual O&M	\$ Mil/yr	1.6	3.7	1.7	3.8
Total Present Value ²	\$ Mil	140	220	160	240
TN Cost ³	\$/lb N	4.3	5.9	4.0	5.2
TP Removal					
Capital ¹	\$ Mil	13	14	20	22
Annual O&M	\$ Mil/yr	0	0	0	0
Total Present Value²	\$ Mil	13	14	20	22
TP Cost ³	\$/lb P	65	74	29	28

1. Costs are referenced to the ENR SF CCI for July 2015 at 11,155.

2. PV is calculated based on a 2 percent discount rate for 30 years.

3. The unit load reduction cost was calculated by dividing the total present value by the nutrient load reduction over the 30-year projection duration.

Executive Summary

Table ES-1. Summary of Costs and Load Reductions

Parameter	Unit	Current Dry Season ¹	Current Wet Season ¹	Opt. Dry Season ²	Opt. Wet Season ²	Level 2 Dry Season ²	Level 2 Wet Season ²	Level 3 Dry Season ²	Level 3 Wet Season ²	Side- stream ²
Flow to Bay	mgd	6.0	7.4	6.0	7.5	7.5	9.4	7.5	9.4	
Nutrients to Bay (Average)										
Ammonia	lb N/d	1,565	1,957	1,140	1,790	130	160	130	160	1,510
TN	lb N/d	3,167	3,678	2,260	2,730	940	1,180	380	470	3,600
TP	lb P/d	65	76	50	50	60	80	20	20	
Costs ³										
Capital	\$ Mil			5.6	6.0	110	140	120	150	12
PV O&M	\$ Mil			0.2	10	40	80	40	90	14
Total PV	\$ Mil			6	16	150	220	160	240	26
Unit Costs										
Capital	\$/gpd			0.4	0.5	5.5	7.2	6.0	7.9	
TN Cost ⁴	\$/lb N	-	-	1.4	3.6	4.3	5.9	4.0	5.2	3.3
TP Cost ⁴	\$/lb P		_	21	15	65	74	29	28	

Report Feedback/Comments

We Need Your Feedback

- Are findings consistent with the site visit recommendations?
- Recommended process
- Site layouts
- Cost
- Special considerations
 - $_{\circ}\,\text{Recycled}$ water
 - o Site constraints
 - ° Greenhouse gas emissions constraints
 - $_{\circ}$ Others

Summary of Preliminary Cost and Load Reductions for Wave 1 Plants

All information presented is preliminary and subject to change.

DRAFT Wave 1 Optimization Summary (Dry Season)

Facility	Permitted Capacity (ADWF) mgd	Capital Cost \$ Mil	Total PV \$ Mil	Capital \$/gpd	TN Cost \$/lb N	TN Load Reduction Ib N/d	TP Cost \$/lb P	TP Load Reduction Ib P/d
American Canyon	2.5	0.4	0.6	0.3	N/A	N/A	3.8	45
Benicia	4.5	0.4	0.6	0.2	N/A	N/A	4.4	40
Burlingame	5.5	1.4	1.5	0.5	0.5	540	2.3	140
CCCSD	53.8	10.2	24.4	0.29	0.4	1,710	39	100
Delta Diablo	19.5	5.6	6	0.4	1.4	1,150	21	20
DSRSD	17	3.1	10.3	0.3	1.1	1,630	95	20
Hayward	18.5	0.7	3.1	0.06	N/A	N/A	1.6	530
Livermore	8.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Oro Loma	20	7.2	10.6	0.6	1.8	1,610	5.9	120
Total / Flow Weighted Average	149.8	29	57.1	0.3	0.7	6,640	28.8	1,015

*Load reductions are projected to the midpoint of analysis period.

DRAFT Wave 1 Summary of Level 2 Upgrades (Dry Season)

	Level 2 Upgrades								
Facility	Capital Cost \$ Mil	Total PV \$ Mil	Capital \$/gpd	TN Cost \$/lb N	TN Load Reduction Ib N/d	TP Cost \$/lb P	TP Load Reduction Ib P/d		
American Canyon	16	16	6.3	164	10	1.8	50		
Benicia	24.1	27	5.4	6.6	360	2.2	60		
Burlingame	42.6	65	7.7	7.5	670	14	180		
CCCSD	180	248	3.4	3.4	5,600	N/A	N/A		
Delta Diablo	110	150	5.5	4.3	3,000	65	20		
DSRSD	70	120	3.9	3.8	2,200	760	10		
Hayward	174	219	9.4	13	1,500	1.3	640		
Livermore	21	23	2.2	1.9	1,100	N/A	N/A		
Oro Loma	28	35	1.4	1.3	2,500	14	50		
Total / FW Average	666	904	4	7	16,940	97	1,010		

*Load reductions are projected to the midpoint of analysis period.

DRAFT Wave 1 Summary of Level 3 Upgrades (Dry Season)

	Level 3 Upgrades									
Facility	Capital Cost	Total PV	Capital	TN Cost	TN Load Reduction	TP Cost	TP Load Reduction			
	\$ Mil	\$ Mil	\$/gpd	\$/lb N	lb N/d	\$/lb P	lb P/d			
American Canyon	19	55	7.6	39	120	9.4	60			
Benicia	34	43	7.5	5.1	600	11	80			
Burlingame	56	85	10	6.6	980	14	210			
CCCSD	251	523	4.7	4.4	8,700	49	230			
Delta Diablo	120	160	6	4	3,600	29	60			
DSRSD	80	140	4.8	3.4	2,900	140	60			
Hayward	238	310	13	11	2,400	26	710			
Livermore	26	39	2.8	2.1	1,500	43	10			
Oro Loma	52	89	2.6	1.8	3,700	14	150			
Total / FW Average	875	1,444	6	5	24,500	46	1,570			

*Load reductions are projected to the midpoint of analysis period.

Comparison of DRAFT Wave 1 Results (Dry Season)

	Capacity (ADWF) mgd	Optimization		Leve	l 2	Level 3	
Facility		Capital Cost \$ Mil	Capital \$/gpd	Capital Cost \$ Mil	Capital \$/gpd	Capital Cost \$ Mil	Capital \$/gpd
American Canyon	2.5	0.4	0.3	16	6.3	19	7.6
Benicia	4.5	0.4	0.2	24	5.4	33	7.5
Burlingame	5.5	1.4	0.5	43	7.7	56	10
CCCSD	53.8	10.2	0.29	180	3.4	251	4.7
Delta Diablo	19.5	5.6	0.4	110	5.5	120	6
DSRSD	17	3.1	0.3	70	3.9	80	4.8
Hayward	18.5	0.7	0.06	174	9.4	238	13
Livermore	8.5	N/A	N/A	21	2.2	26	2.8
Oro Loma	20	7.2	0.6	28	1.4	52	2.6
Total / Flow Weighted Average	149.8	29	0.3	666	4	875	6

Comparison of DRAFT Wave 1 Results (Dry Season)

	Capacity (ADWF) mgd	Optimization		Lev	vel 2	Level 3	
Facility		TN Cost \$/lb N	TN Load Reduction Ib N/d	TN Cost \$/lb N	TN Load Reduction Ib N/d	TN Cost \$/lb N	TN Load Reduction Ib N/d
American Canyon	2.5	N/A	N/A	164	10	39	120
Benicia	4.5	N/A	N/A	6.6	360	5.1	600
Burlingame	5.5	0.5	540	7.5	670	6.6	980
CCCSD	53.8	0.44	1,710	3.4	5,600	4.4	8,700
Delta Diablo	19.5	1.4	1,150	4.3	3,000	4	3,600
DSRSD	17	1.1	1,630	3.8	2,200	3.4	2,900
Hayward	18.5	N/A	N/A	13	1,500	11	2,400
Livermore	8.5	N/A	N/A	1.9	1,100	2.1	1,500
Oro Loma	20	1.8	1,610	1.3	2,500	1.8	3,700
Total / Flow Weighted Average	149.8	0.7	6,640	7	16,940	5	24,500
Candidate Plants for Sidestream Treatment

	Initial Caroon	Refined Estimate				
Subembayment	Eligible for Ammonia Reduction	Eligible for Ammonia Reduction	Eligible for Total Nitrogen Reduction			
Suisun Bay	3	1	2			
San Pablo Bay	8	2	6			
Central Bay	6	6	6			
South Bay	13	11	11			
Lower South Bay	2	0	2			
Total	32	20	27			

Preliminary TN Discharge Load Reduction Potential with Sidestream Treatment (based on Current Dry Season)

Subembayment	Annual Average Daily Discharge, lb N/d*	Preliminary Discharge Reduction Potential with Sidestream Treatment, %**
Suisun Bay	6,620	5-10%
San Pablo Bay	1,670	15-20%
Central Bay	12,250	20-25%
South Bay	23,140	12-16%
Lower South Bay	7,570	20-25%
Total	51,250	15-20%

* Source: 2015 Group Annual Report

** Based on plants identified as candidates for sidestream treatment to further reduce ammonia discharge loads to the Bay

What Predictions Can We Make Based on Early Results?

Projecting Preliminary Wave 1 Total N Results for All Plants (Dry Season)

Parameter	Units	Current ^a	Optimization ^b	Sidestream ^b	Level 2 ^b	Level 3 ^b
Suisun Bay	kg N/d	6,622	5,600	6,200	2,900	1,100
San Pablo Bay	kg N/d	1,673	1,400	1,300	900	400
Central Bay	kg N/d	12,254	10,400	9,200	3,600	1,500
South Bay	kg N/d	23,135	19,700	19,200	8,100	3,200
Lower South Bay	kg N/d	7,567	6,400	5,400	6,200	2,500
Total	kg N/d	51,250	43,600	41,300	21,700	8,700
Load Reduction	kg N/d		7,700	10,000	29,500	42,600
Load Reduction	%		15%	19%	58%	83%

a) Group Annual Report 2015 dry season average values

b) Based on current loads

Projecting Preliminary Wave 1 Capital Cost Results for All Plants (Dry Season)

Parameter	Units	Optimization	Sidestream	Level 2	Level 3
Suisun Bay	\$ Mil	20	20	400	600
San Pablo Bay	\$ Mil	5	41	250	380
Central Bay	\$ Mil	19	72	670	1,000
South Bay	\$ Mil	43	123	1,050	1,570
Lower South Bay	\$ Mil	33	36	940	1,410
Total	\$ Mil	120	291	3,310	4,960

Additional Data Requests

Recycled Water

BACWA Recycled Water Survey 2015

Agency Name (Recycled Water Producer):

Recycled Water Distributors/Retailers:

CURRENT AND PROJECTED FUTURE AMOUNT OF RECYCLED WATER BY USE CATEGORY (in acre-feet)

	Total Distribute	Confidence (see Note B)	Golf Course Irrigation (See Note C)	Landscape (see Note D	Commercial (see Note E)	Industrial (see Note F)	Agricultural (see Note G)	Environmental Enhancement (see Note H)	Internal Use (see Note I)	GW Recharge for Indirect Potable Reuse	Surface Water Augmentation	Direct Potable Reuse	Other Non- potable Reuse (See Note J)	RO concentrate or other return	Comments
Type of RW (See	Note A):														
Current			0	0	0	0	0	0	0	0	0	0	0	0	
Future															
Future															
Future															
Future															
Future															
Future															
	TOTAL		Golf	Landsca	Commer	Industria	Agricult	Environ.	Internal	GV	Surface	Direct	Other	Return	
	IUIAL		Course	pe	cial		ural	Enhance	Use	Recharg	₩ater	Potable	Non-	Flows	Comments
January	IUIAL		Course	pe	cial	I	ural	Enhance	Use	Recharg	¥ater	Potable	Non-	Flows	Comments
January February	IUIAL		Course	pe	cial	 	ural	Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
January February March	IUIAL		Course	pe	cial		ural	Enhance	Use	Recharg	¥ater	Potable	Non-	Flows	Comments
January February March April	IUIAL		Course	pe	cial		ural	Enhance	Use	Recharg	Water	Potable	Non-	Flows	Comments
January February March April May			Course	pe	cial		ural	Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
January February March April May June			Course	ре 	cial		ural	Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
January February March April May June July			Course	pe			ural	Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
January February March April May June July August			Course	ре 				Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
January February March April May June July August September	IUIAL		Course	pe				Enhance	Use	Recharg	Vater	Potable	Non-	Flows	Comments
January February March April May June July August September October			Course	ре 				Enhance	Use	Recharg	Vater	Potable	Non-		Comments
January February March April May June July August September October November			Course	pe				Enhance		Recharg	Vater	Potable	Non-		Comments
January February March April May June July August September October November December			Course	ре 				Enhance		Recharg	Vater	Potable	Non-		Comments

Purpose: To provide information regarding recycled water projects that could have an impact on nutrient loads and/or concentrations.

Capital Improvement Project

	A	В	С	D	E	F	G	Н		J	K			
1		Name of Re	<name></name>											
2		Utility Name	<utility></utility>											
3		Phone Num	<phone></phone>											
4														
5	Planned (CIP Projec	ts that may ir	npact nutrier	nt loads									
6														
- (D : 1								1 1 10 11				
		Discharger	Permitted	Anticipated	Project	Estimated Effluent	Estimated Effluent	Capital Cost (\$ Mil):	Estimated Annual UXIVI	Level of Confidence	Comment			
0			ADWDF Casacily (mod)	Completion	Description	r otar Nitrogen (mg NrL)	rotal Phosphorus (mg		Cost (ir available: \$ Milij:					
0	EXAMPLE	ABC	Capacity (mgu) 10	2018	1) Membrane	6	NVO	\$200	\$100	100%	The MBB will perform reliable pitrogen removal to 6 mg			
		700	10	2010	Bioreactor (MBB)	, i i i i i i i i i i i i i i i i i i i	1910	\$200	\$100	1007.	N/L total nitrogen. The existing aeration basins will be			
					2) Modifu existing						modified to achieve what they can get with nitrogen			
					aeration basins to						removal. The anticipated average annual existing aeration			
					operate as						basins effluent is 15 mg N/L total nitrogen.			
					Nit/Denite with									
					anoxic zones and									
					mixed liquor return									
					pumps; 3) replace									
-9					WAS pumps									
10														
12														
13														
14														
15														
16														
17														
18														
19														
20											ļ			
21														
23														
24														
25														
26														
27														
28														
29						•	•		· .		·			

Purpose: To provide information regarding other CIP projects that could have an impact on nutrient loads and/or concentrations.

Group Annual Report

Group Annual Report Workbook – Due on 7/31/2016

SamplePaint	Dirchargo		Dirch	Dirchargo		Dirchargo		Dirchargo		Dircha					
SampleHame	Daily	lvg Flow	Daily Avg a	BOD Cane	Daily Avq B	OD Cane	Daily Avg TSS Cane		Daily Avq Ammonia Conc		Daily Avg TKN Cane		Daily A		
Data	Dircharge, Daily Avg Flou		Dircharge, Daily Avg Flow		Dircharge, Daily	Dircharge, Daily Avg cBOD Conc		Dircharge, Daily Avg BOD Conc		Dirchargo, Daily Avg TSS Conc		Dirchargo, Daily Avg Ammonia Conc		Dircharge, Daily Avg TKN Conc	
	Value		Satindicatorif valuairND or DNQ	Valuo	Set indicator if value ir ND or DNQ	Valuo	Set indicator if value ir ND or DNQ	Valuo	Sot indicator if value ir ND or DNQ	Valuo	Set indicator if value ir ND or DNQ	Value	Sotind valuo ir N		
Sampling Type	ţ			Comparito (Flau-Paced)		Comparite (Flou-Paced)		Comparito (Flaw-Paced)		Comparite (FlourPaced)		Comparito (Flau-Paced)			
Unit	l l	mqd		mgfL		mall		mafL		mg N/L		mg N/L			
Hates	Ì						Selec	t the sa	mpling ty	pe for e	each				
EXAMPLE, 7/1/2015	\mathbb{H}	50	-	12		16	const	ituent				28			
7/1/2015	H				\sim .	<u> </u>					-	_ _			
7/2/2015	H		-		<u> </u>						1 6		<u> </u>		
7/3/2015	+		-			\sim		provide	e CROD/RO	JD/155	values fo	or days			
77472015			-		-		with	nutriont	compline			T) .			
7/5/2015			-		-		with	nuurent	. samping	J (COLU	min c, G,	, 1)			
7/6/2015			-		-		\sim		-		-				
7/7/2015		ι	-		-			/	-		-				
7/8/2015			-		-		-	//	-		-				
7/9/2015		1	-		-		-		<u> </u>		-		The		
7/10/2015		1	-		-		-		i		-				
7/11/2015		\downarrow	-		-		-			<u> </u>	-		WIII a		
7/12/2015		\downarrow	-		-		-		-		-				
7/13/2015		\rightarrow	-		-		-		-		<u> </u>				
7/14/2015			Hear cal	acts tha	appropria	ato valu	a type (-	ND o	r DNO) fo	r oach	-				
7/15/2015		$ \rightarrow $	0361 361	eus me	approprie	ate valu	e type (-	, 110, 0		Cacil	-				
7/16/2015		\rightarrow	concent	ration, F	or days w	vith ND	or DNO.	place th	e concent	tration	-				
7/17/2015		\rightarrow							concern.		-				
7/18/2015		-+	value fo	r that pa	articular d	lay that	would be	e used fo	or CIWQS	(e.g.,	-				
7/19/2015	<u> </u>	-+		ho load	na colum	no ALL	AMA	addree	a this but	nlacina					
7/20/2015		-++	MDL). I	ne ioadi	ng colum	ns (v u) AM) WII	addres	s this by	placing	an 👝 -				
7/21/2015	<u> </u>	-+	"-" cian	for act	ial or a "	<" cymh	ol for ait	hor DN(O or ND u	cing the					
772272015	<u> </u>	— H	– siyii	TUT acti		< Synn			2 OF ND U	sing un					
772372015	-	— []	equation	Elow)	X Provide	d Conce	entration (ea M	DI) X 3 7	854					
7/20/2019	<u> </u>	—— <u>+</u>	equation	,	o nac	a conte	and down	(0.9./ 11	02,70.	00 11					
772572015	-	<u>\</u>													
772672015	<u> </u>			1	-		-	I			-				
7/2015	<u> </u>		Select th	e Samp	lina Type	from th	ie Drop D	own Or	otions		-				
772872015	<u> </u>	'	o creat th	e oump	ing type	u		on of			-				
772972015				-							-				

The workbook was updated to properly handle NDs and DNQs

Basis for Group Annual Report Input Workbook

- CIWQS limitations: problematic as a source of data for the Nutrient Annual Report.
 - Some agencies have different discharge points that are not accounted for in the CIWQS download query.
 - Recycled water flows and zero discharge periods are not consistently reported to CIWQS.

o Agencies report different parameters for some analytes.

 Reduces Back and Forth QA/QC between HDR and Dischargers

Next Steps

Next Steps

- Release Wave 2 Reports (July 2016)
- Release Wave 3 Reports (late Summer 2016)
- Release Wave 4 Reports (Fall 2016)
- Submit Group Annual Report (October 1, 2016)
- Release Draft Report (Year End)

Q/A

BACWA Workshop: Nutrient Reduction by Treatment Optimization and Upgrades Update

BACWA Workshop 27 June 2016

© 2016 HDR, Inc., all rights reserved.