

SF Bay Nutrient Strategy

- Element 4 Establish
 Guidelines
- Nutrient Assessment
 Framework
- Review DO objectives

What Is An Assessment Framework?

A decision support tool to assess and classify Bay segments by status of eutrophication and other adverse effects of nutrient overenrichment

- Condition assessment i.e., assess risk of impairment
- Provides management targets for use in modelling to determining "allowable loads"

Assessment Framework Technical Team Members

Experts in assessment frameworks and criteria:

- Suzanne Bricker, NOAA
- Larry Harding, UCLA
- James Hagy, EPA-ORD

Local experts:

- James Cloern, USGS
- Richard Dugdale, SFSU
- Raphael Kudela, UC Santa Cruz
- Mine Berg, AMS

Management Team:

- Naomi Feger, SF Water Board
- David Senn, SFEI
- Martha Sutula, SCCWRP

Assessment Framework Stakeholder Concerns

- Not enough opportunity to comment on approach
- Any number proposed becomes a regulatory number
- Why focus on chla, rather than DO, HABs toxins, fish abundance
- Might derail collaborative process
- Should it drive the science plan

Water Board Perspective

- Assessment framework not complete
- Assessment framework ≠ permit limits
- Chlorophyll a linkage to nutrients
- Confirms current condition assessment
- Need for future condition scenarios and load response modelling
- Informs monitoring and science plan

Assessment Framework Development

- Begin with conceptual models
 - Review available approaches in white paper
- Develop assessment framework with experts
 - Develop assessment framework core principles
 - Conduct analyses to support discussion of classification boundaries
 - Propose assessment framework
 classification scheme
- Vete with advisory groups and refine assessment framework (...repeat)

Fall 2013

Spring 2014

Spring 2015

Assessment Framework Core Principles

- Define geographic scope, habitats included, Bay segmentation
- Identify assessment framework metrics and specify how to measure them
- Define how metrics link to impairment of beneficial uses
- Define temporal and spatial elements of assessment framework
- Inform a "proto-monitoring program" required to support regular assessments of the Bay

Analyses Chlorophyll a and DO

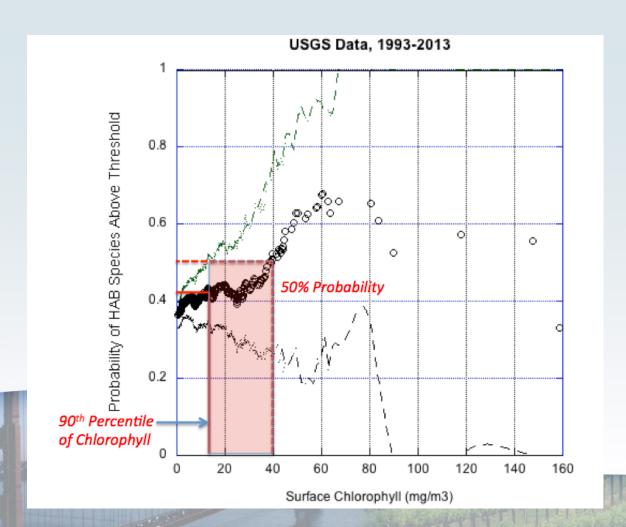
- DO WQOs
 - 5 mg/L; 7 mg/L
 - 3-month median 80 percent saturation
- Temporal periods Chl-a evaluated
 - February to October recommended
 - Annual mean
- Statistical analysis
 - Develop to quantitative thresholds
 - Represent hypotheses to investigate further

DO Analyses - Concentration

Sub-embayment	10th Percentile of	10th Percentile of DO	% of Time Summer		
	Summer Vertical	Summer Vertical	DO< 5 mg/L		
	Median DO (mg/L)	Minimum (mg/L)			
Lower South Bay	5.7	5.6	2.9		
South Bay	5.9	5.8	0.5		
Central Bay	6.5	6.5	0.2		
North Central Bay	6.8	6.4	1.9		
San Pablo Bay	7.1	7	0		
Suisun Bay	7.8	7.7	0		

DO Analyses - % Saturation

Julian	Lowe	er South	South		Cent	ral	No. C	entral	San P	ablo	Suisu	n
Day	N	Count	N	Count	N	Count	N	Count	N	Count	N	Count
30-120	63	0	210	0	82	0	60	1	126	1	96	0
60-150	63	0	210	0	82	0	60	5	126	5	96	0
90-180	63	4	210	0	82	2	<mark>60</mark>	8	126	4	96	0
120-210	61	11	201	0	80	4	59	9	126	1	100	1
150-240	54	15	189	2	77	0	58	0	126	0	97	0
180-270	53	7	176	0	73	0	60	0	126	0	94	0
210-300	50	3	166	0	68	0	55	0	117	0	89	0


Analyses Chlorophyll a and HABs

- HAB thresholds
 - HAB species cell densities
 - Toxin concentrations
 - SPATT and particulate
 - Mussel toxin concentration
- Temporal periods evaluated
 - April to November
 - Monthly

HAB Cell Density Alert Levels

Organism	Alert Level	Effect	Reference
Alexandrium	Presence	Paralytic	http://www.scotland.gov.uk/Publications/2011
		Shellfish	/03/16182005/37
		Poisoning (PSP)	
Blue-Green	40-	Hepatotoxins;	Guidelines for Safe Recreational Water
Algae	6	neurotoxins	Environment (World Health Organization 2003);
	100x10 ⁶ /L		California Guidance (OEHHA)
Dinophysis	100-1,000/L		HTTP://WWW.SCOTLAND.GOV.UK/PUBLICATIONS/20
			11/03/16182005/37 ; Vlamis et al. 2014
Karenia	5,000/L	Neurotoxic	National Shellfish Sanitation Program, Guidance
mikimotoi		Shellfish	for the Control of Molluscan Shellfish, 2013
		Poisoning	Revision;
		(NSP)	HTTP://WWW.FDA.GOV/FOOD/GUIDANCEREGULATIO
			n/FederalStateFoodPrograms/ucm2006754.ht
			М
Karlodinium	5,000/L	Ichthyotoxic	
veneficum			
Pseudo-	10,000-	Amnesic	Cal-HABMAP ; Shumway et al. 1995; Anderson
nitzschia	50,000/L	Shellfish	et al. 2009
		Poisoning (ASP)	

Chlorophyll and HAB Species Probability Analysis

Assessment Framework Example

Segment Monthly Mean Chlorophyll a Linked to HAB	Ecological Condition Based on Annual Frequency of Occurrence in Monthly Samples					
Abundance (μg L ⁻¹)	1 of 12	2-3	4-6	6+		
≤ 13	Very high	Very high	Very high	Very high		
>13-25	Good	Moderate	Moderate	Low		
>25- 40	Moderate	Moderate	Low	Very Low		
>40-60	Moderate	Low	Very Low	Very Low		
>60	Low	Very low	Very low	Very low		

Preliminary Recommendations for HABs

- Increased monitoring of HAB abundance and toxins
 - Improved understanding of risk of toxic HABs with increasing chlorophyll-a
 - Monitoring of water column and biota
 - Continue to validate SPATT vs particulate concentrations
- Current guidelines emphasize human health; acute effects
 - Increased understanding of aquatic health effects
 - Research and expert guidelines should emphasize chronic effects

Other HAB Issues

- Need to understand baseline risk
- Better understand nexus to coastal waters for marine species
- Source and fate of microcystin Delta and South Bay

Assessment Framework Next Steps

- Last (?) expert science team meeting
- Finalize draft assessment framework report
- Stakeholder Meeting(s)
- Continue review of DO WQOs
 - Focus LSB natural conditions
- Continue to evaluate other indicators
 - Gross Primary Productivity
 - Food quality community composition

